首页> 外文期刊>Circuits, systems, and signal processing >Auxiliary Model-Based Recursive Generalized Least Squares Algorithm for Multivariate Output-Error Autoregressive Systems Using the Data Filtering
【24h】

Auxiliary Model-Based Recursive Generalized Least Squares Algorithm for Multivariate Output-Error Autoregressive Systems Using the Data Filtering

机译:基于辅助滤波的多变量输出误差自回归系统基于模型的递归广义最小二乘算法

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the parameter estimation problem of multivariate output-error autoregressive systems. Based on the data filtering technique and the auxiliary model identification idea, we derive a filtering-based auxiliary model recursive generalized least squares algorithm. The key is to filter the input-output data and to derive two identification models, one of which includes the system parameters and the other contains the noise parameters. Compared with the auxiliary model-based recursive generalized least squares algorithm, the proposed algorithm requires less computational burden and can generate more accurate parameter estimates. Finally, an illustrative example is provided to verify the effectiveness of the proposed algorithm.
机译:本文着重研究多元输出误差自回归系统的参数估计问题。基于数据过滤技术和辅助模型识别思想,推导了基于过滤的辅助模型递归广义最小二乘算法。关键是过滤输入输出数据并推导两个识别模型,其中一个包含系统参数,另一个包含噪声参数。与基于辅助模型的递归广义最小二乘算法相比,该算法所需的计算量较小,可以生成更准确的参数估计。最后,提供了一个示例性例子来验证所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号