首页> 外文期刊>Circuits, Devices & Systems, IET >Supervised learning for early and accurate battery terminal voltage collapse detection
【24h】

Supervised learning for early and accurate battery terminal voltage collapse detection

机译:监督学习早期和准确的电池终端电压折叠检测

获取原文
获取原文并翻译 | 示例

摘要

Rechargeable batteries are critical components in many electrical systems nowadays. One has to ensure reliable diagnosis and assessment of the installed batteries for smooth and safe operations. Assessment of the remaining capacity of a battery is crucial diagnostic information. A battery management system (BMS) needs to reliably report the ability of the battery to supply power or the lack thereof. If the BMS fails to do so at an early stage, this may compromise the health of the entire electric system. When a battery nears a region where the battery state-of-charge (SOC) is low, there is a risk of an abrupt drop in the terminal voltage. An early detection of such a region is crucial; otherwise, the BMS may not have enough time to react. To address this issue, our work provides a novel supervised learning approach towards an early detection of Li-ion battery terminal voltage collapse. No knowledge of initial SOC or battery model parameters is required. This is particularly important as batteries lose their capacity to store charge over time. The efficacy of the proposed approach is demonstrated by an early and accurate detection of terminal voltage collapse over a set of discharge tests conducted using multiple batteries.
机译:可充电电池现在是许多电气系统中的关键组件。一个人必须确保对安装的电池的可靠诊断和评估,以实现平滑和安全的操作。评估电池的剩余能力是至关重要的诊断信息。电池管理系统(BMS)需要可靠地报告电池供电或缺乏的能力。如果BMS未能在早期阶段执行此操作,这可能会损害整个电力系统的健康状况。当电池接近电池电量(SOC)低的区域时,终端电压突然下降的风险。这种区域的早期检测至关重要;否则,BMS可能没有足够的时间来反应。为了解决这个问题,我们的工作提供了一种新颖的监督学习方法,旨在早期检测锂离子电池终端电压塌陷。不需要了解初始SOC或电池模型参数。这尤其重要,因为电池失去了随着时间的推移收费的能力。通过使用多电池进行的一组放电测试,通过早期和准确地检测终端电压折叠的早期和准确地检测所提出的方法的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号