首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Network-driven motion estimation for wireless video terminals
【24h】

Network-driven motion estimation for wireless video terminals

机译:无线视频终端的网络驱动运动估计

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a new compression algorithm, termed network-driven motion estimation (NDME), which reduces the power dissipation of wireless video devices in a networked environment by exploiting the predictability of object motion. Since the location of an object in the current frame can often be predicted accurately from its location in previous frames, it is possible to optimally partition the motion estimation computation between the portable devices and high powered compute servers on the wired network. In network-driven motion estimation, a remote high-powered resource at the base-station (or on the wired network), predicts the motion vectors of the current frame from the motion vectors of the previous frames. The base-station sends these predicted motion vectors to a portable video encoder, where motion compensation proceeds as usual. Network-driven motion estimation adaptively adjusts the coding algorithm based on the amount of motion in the sequence, using motion prediction to code portions of the video sequence which contain a large amount of motion and conditional replenishment to code portions of the sequence which contain little scene motion. This algorithm achieves a reduction in the number of operations performed at the encoder for motion estimation by over two orders of magnitude while introducing minimal degradation to the decoded video compared with full search encoder-based motion estimation
机译:本文介绍了一种称为网络驱动运动估计(NDME)的新压缩算法,该算法通过利用对象运动的可预测性来降低网络环境中无线视频设备的功耗。由于通常可以从对象在先前帧中的位置准确地预测出对象在当前帧中的位置,因此可以在移动设备和有线网络上的高性能计算服务器之间最佳地划分运动估计计算。在网络驱动的运动估计中,基站(或有线网络)上的远程高功率资源根据先前帧的运动矢量预测当前帧的运动矢量。基站将这些预测的运动矢量发送到便携式视频编码器,然后在其中进行运动补偿。网络驱动的运动估计可根据序列中的运动量自适应地调整编码算法,使用运动预测对包含大量运动的视频序列部分进行编码,对包含很少场景的序列中的部分编码进行条件补充运动。与基于完全搜索编码器的运动估计相比,该算法将运动估计的编码器执行的操作数量减少了两个数量级,同时对解码视频引入了最小的降级

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号