首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >A fast multiresolution feature matching algorithm for exhaustivesearch in large image databases
【24h】

A fast multiresolution feature matching algorithm for exhaustivesearch in large image databases

机译:大图像数据库穷举搜索的快速多分辨率特征匹配算法

获取原文
获取原文并翻译 | 示例

摘要

Most of the content-based image retrieval systems require a distance computation for each candidate image in the database. As a brute-force approach, the exhaustive search can be employed for this computation. However, this exhaustive search is time-consuming and limits the usefulness of such systems. Thus, there is a growing demand for a fast algorithm which provides the same retrieval results as the exhaustive search. We propose a fast search algorithm based on a multiresolution data structure. The proposed algorithm computes the lower bound of distance at each level and compares it with the latest minimum distance, starting from the low-resolution level. Once it is larger than the latest minimum distance, we can remove the candidates without calculating the full-resolution distance. By doing this, we can dramatically reduce the total computational complexity. It is noticeable that the proposed fast algorithm provides not only the same retrieval results as the exhaustive search, but also a faster searching ability than existing fast algorithms. For additional performance improvement, we can easily combine the proposed algorithm with existing tree-based algorithms. The algorithm can also be used for the fast matching of various features such as luminance histograms, edge histograms, and local binary partition textures
机译:大多数基于内容的图像检索系统都需要对数据库中的每个候选图像进行距离计算。作为强力手段,穷举搜索可用于此计算。但是,这种详尽的搜索非常耗时,并且限制了此类系统的实用性。因此,对提供与穷举搜索相同的检索结果的快速算法的需求不断增长。我们提出了一种基于多分辨率数据结构的快速搜索算法。从低分辨率级别开始,所提出的算法计算每个级别的距离下限,并将其与最新的最小距离进行比较。一旦它大于最新的最小距离,我们就可以删除候选对象,而无需计算全分辨率距离。通过这样做,我们可以大大降低总的计算复杂度。值得注意的是,提出的快速算法不仅提供与穷举搜索相同的检索结果,而且比现有的快速算法提供更快的搜索能力。为了进一步提高性能,我们可以轻松地将提出的算法与现有的基于树的算法结合起来。该算法还可用于各种特征的快速匹配,例如亮度直方图,边缘直方图和局部二进制分区纹理

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号