首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >A study of real-time packet video quality using random neural networks
【24h】

A study of real-time packet video quality using random neural networks

机译:基于随机神经网络的实时分组视频质量研究

获取原文
获取原文并翻译 | 示例

摘要

An important and unsolved problem today is that of automatic quantification of the quality of video flows transmitted over packet networks. In particular, the ability to perform this task in real time (typically for streams sent themselves in real time) is especially interesting. The problem is still unsolved because there are many parameters affecting video quality, and their combined effect is not well identified and understood. Among these parameters, we have the source bit rate, the encoded frame type, the frame rate at the source, the packet loss rate in the network, etc. Only subjective evaluations give good results but, by definition, they are not automatic. We have previously explored the possibility of using artificial neural networks (NNs) to automatically quantify the quality of video flows and we showed that they can give results well correlated with human perception. In this paper, our goal is twofold. First, we report on a significant enhancement of our method by means of a new neural approach, the random NN model, and its learning algorithm, both of which offer better performances for our application. Second, we follow our approach to study and analyze the behavior of video quality for wide range variations of a set of selected parameters. This may help in developing control mechanisms in order to deliver the best possible video quality given the current network situation, and in better understanding of QoS aspects in multimedia engineering.
机译:今天的一个重要而未解决的问题是对通过分组网络传输的视频流的质量进行自动量化的问题。尤其是,实时执行此任务的能力(通常是针对实时发送的流)尤其有趣。由于有许多影响视频质量的参数,并且它们的综合效果尚未得到很好的识别和理解,因此该问题仍未解决。在这些参数中,我们具有源比特率,编码的帧类型,源中的帧率,网络中的丢包率等。只有主观评估才能给出良好的结果,但是根据定义,它们不是自动的。之前,我们已经探索了使用人工神经网络(NN)自动量化视频流质量的可能性,并且我们证明了它们可以提供与人类感知良好相关的结果。在本文中,我们的目标是双重的。首先,我们报告了通过一种新的神经方法,随机NN模型及其学习算法对我们的方法的重大改进,这两种方法都为我们的应用提供了更好的性能。其次,我们遵循我们的方法来研究和分析一组选定参数的大范围变化的视频质量行为。这可能有助于开发控制机制,以便在当前网络情况下提供最佳的视频质量,并有助于更好地理解多媒体工程中的QoS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号