首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Learning and synthesizing MPEG-4 compatible 3-D face animation from video sequence
【24h】

Learning and synthesizing MPEG-4 compatible 3-D face animation from video sequence

机译:从视频序列中学习并合成MPEG-4兼容的3-D人脸动画

获取原文
获取原文并翻译 | 示例

摘要

We present a new system that applies an example-based learning method to learn facial motion patterns from a video sequence of individual facial behavior such as lip motion and facial expressions, and using that to create vivid three-dimensional (3-D) face animation according to the definition of MPEG-4 face animation parameters. The system consists of three key modules, face tracking, pattern learning, and face animation. In face tracking, to reduce the complexity of the tracking process, a novel coarse-to-fine strategy combined with a Kalman filter is proposed for localizing key facial landmarks in each image of the video. The landmarks' sequence is normalized into a visual feature matrix and then fed to the next step of process. In pattern learning, in the pretraining stage, the parameters of the camera that took the video are requested with the training video data so the system can estimate the basic mapping from a normalized two-dimensional (2-D) visual feature matrix to the representation in 3-D MPEG-4 face animation parameter space, in assistance with the computer vision method. In the practice stage, considering that in most cases camera parameters are not provided with video data, the system uses machine learning technology to complement the incomplete 3-D information for the mapping that information is needed in face orientation presentation. The example-based learning in this system integrates several methods including clustering, HMM, and ANN to make a better conversion from a 2-D to 3-D model and better estimation of incomplete 3-D information for good mapping; this will be used to drive face animation thereafter. In face animation, the system can synthesize face animation following any type of face motion in video. Experiments show that our system produces more vivid face motion animation, compared to other early systems.
机译:我们提供了一个新系统,该系统应用基于示例的学习方法从单个面部行为(如嘴唇运动和面部表情)的视频序列中学习面部运动模式,并使用该视频系统创建生动的三维(3-D)面部动画根据MPEG-4脸部动画参数的定义。该系统包括三个关键模块,面部跟踪,模式学习和面部动画。在人脸跟踪中,为降低跟踪过程的复杂性,提出了一种新颖的从粗到精策略与卡尔曼滤波器相结合的方法,用于在视频的每个图像中定位关键的人脸界标。将地标的序列归一化为视觉特征矩阵,然后输入到下一步处理。在模式学习中,在预训练阶段,会使用训练视频数据请求拍摄视频的摄像机参数,以便系统可以估计从标准化的二维(2-D)视觉特征矩阵到表示的基本映射在3-D MPEG-4面部动画参数空间中,借助计算机视觉方法。在实践阶段,考虑到在大多数情况下摄像机参数未提供视频数据,因此系统使用机器学习技术来补充不完整的3D信息,以进行面部定向展示中需要该信息的映射。该系统中基于示例的学习集成了多种方法,包括聚类,HMM和ANN,以实现从2-D到3-D模型的更好转换,以及更好地估计不完整的3-D信息以实现良好的映射;此后将用于驱动面部动画。在面部动画中,系统可以按照视频中任何类型的面部运动来合成面部动画。实验表明,与其他早期系统相比,我们的系统产生的面部动作动画更加生动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号