首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Optimization Strategies for High-Performance Computing of Optical-Flow in General-Purpose Processors
【24h】

Optimization Strategies for High-Performance Computing of Optical-Flow in General-Purpose Processors

机译:通用处理器中光流高性能计算的优化策略

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe the high-performance implementation of an optical-flow algorithm that takes advantage of the processor's architecture. Tuning the code, i.e., adapting it to take full advantage of the processor, is challenging, time consuming, and requires efficient programming at different levels but can lead to significant improvements in performance. The optimized implementation presented here is highly interesting for a number of applications since it delivers real-time motion estimations at high-image resolution on a PC or in an embedded system based on a general-purpose processor. In a 2.83GHz Core 2 Quad PC, it achieves a speedup of 14 compared to our first code version and 2052.7f/s for the well-known 252$, times , $316 Yosemite sequence, and a speedup of 17.6 and 68.5 f/s for a 1016 $, times , $1280 sequence. But the description of how this high-performance is achieved goes beyond a specific application since the paper presented here illustrates how inherently dense, low-level visual algorithms (pixel-wise computation) can be structured and improved to take full advantage of a standard processor. The implementation is compared with other hardware (based on FPGAs and GPUs) and software (based on clusters, PCs, and special-purpose processors) optical-flow implementations, showing that it outperforms them.
机译:在本文中,我们描述了利用处理器架构的光流算法的高性能实现。调整代码,即使其适应以充分利用处理器的优势,既困难又费时,并且需要在不同级别进行有效编程,但会导致性能显着提高。此处介绍的优化实现对许多应用程序都非常有趣,因为它可以在PC或基于通用处理器的嵌入式系统中以高图像分辨率提供实时运动估计。在2.83GHz Core 2 Quad PC上,与我们的第一个代码版本相比,它的加速比为14,而众所周知的252 $,times,$ 316优胜美地序列的加速比为2052.7f / s,以及17.6和68.5f / s的加速比对于1016 $,times,$ 1280序列。但是,如何实现这种高性能的描述超出了特定的应用范围,因为此处呈现的论文说明了如何构造和改进固有的密集低级视觉算法(逐像素计算)以充分利用标准处理器的优势。将该实现与其他硬件(基于FPGA和GPU)和软件(基于集群,PC和专用处理器)的光流实现进行了比较,表明其性能优于其他实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号