首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Visual Object Tracking Based on Combination of Local Description and Global Representation
【24h】

Visual Object Tracking Based on Combination of Local Description and Global Representation

机译:基于局部描述和全局表示相结合的视觉对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper provides a novel method for visual object tracking based on the combination of local scale-invariant feature transform (SIFT) description and global incremental principal component analysis (PCA) representation in loosely constrained conditions. The state of object is defined by the position and shape of a parallelogram, which means that tracking results are given by locating the object in every frame using parallelograms. The whole method is constructed in the framework of particle filter which includes two models: the dynamic model and the observation model. In the dynamic model, particle states are predicted with the help of local SIFT descriptors. Local key point matching between successive frames based on SIFT descriptors provides us an important cue for the prediction of particle states; thus, we can efficiently spread particles in the neighborhood of the predicted position. In the observation model, every particle is evaluated by local key point-weighted incremental PCA representation, which can describe the object more accurately by giving large weights to the pixels in the influence area of key points. Moreover, by incorporating the dynamic forgetting factor, we can update the PCA eigenvectors online according to the object states, which makes our method more adaptable under different situations. Experimental results show that compared to other state-of-the-art methods, the proposed method is robust especially under some difficult conditions, such as strong motion of both object and background, large pose change, and illumination change.
机译:本文基于局部尺度不变特征变换(SIFT)描述与全局增量主成分分析(PCA)表示相结合的松散约束条件,提供了一种新颖的视觉对象跟踪方法。对象的状态由平行四边形的位置和形状定义,这意味着通过使用平行四边形在每一帧中定位对象来给出跟踪结果。整个方法是在粒子滤波器的框架内构建的,它包括两个模型:动态模型和观察模型。在动态模型中,借助局部SIFT描述符预测粒子状态。基于SIFT描述符的连续帧之间的局部关键点匹配为粒子状态的预测提供了重要线索。因此,我们可以在预测位置附近有效地散布粒子。在观测模型中,每个粒子都通过局部关键点加权增量PCA表示进行评估,通过对关键点影响区域中的像素赋予较大的权重,可以更准确地描述对象。此外,通过结合动态遗忘因子,我们可以根据对象状态在线更新PCA特征向量,这使我们的方法在不同情况下更加适应。实验结果表明,与其他最新方法相比,该方法在某些困难条件下(例如,对象和背景的强烈运动,较大的姿态变化和照明变化)具有较强的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号