首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Moving Least-Squares Method for Interlaced to Progressive Scanning Format Conversion
【24h】

Moving Least-Squares Method for Interlaced to Progressive Scanning Format Conversion

机译:移动最小二乘法进行隔行到逐行扫描格式转换

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce an efficient intra-field deinterlacing algorithm based on moving least squares (MLS). The MLS algorithm has proven successful for approximating scattered data by minimizing a weighted mean-square error norm. In order to estimate the value of the missing point using the given data, we utilize MLS to generate a generic local approximation function about this point. In the MLS method, we adopt trigonometric functions to approximate the local function. This method is compared to other benchmark algorithms in terms of peak signal-to-noise ratio and structural similarity objective quality measures and deinterlacing speed. It was found to provide excellent performance and the best quality-speed tradeoff among the methods studied.
机译:在本文中,我们介绍了一种基于移动最小二乘(MLS)的高效场内去隔行算法。已证明MLS算法通过最小化加权均方误差范数成功地逼近了分散数据。为了使用给定数据估计缺失点的值,我们利用MLS生成关于该点的通用局部逼近函数。在MLS方法中,我们采用三角函数来近似局部函数。在峰值信噪比,结构相似性客观质量度量和去隔行速度方面,将该方法与其他基准算法进行了比较。人们发现,在所研究的方法中,它具有出色的性能和最佳的质量-速度折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号