首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Investigating 3-D Model and Part Information for Improving Content-Based Vehicle Retrieval
【24h】

Investigating 3-D Model and Part Information for Improving Content-Based Vehicle Retrieval

机译:研究3-D模型和零件信息,以改进基于内容的车辆检索

获取原文
获取原文并翻译 | 示例

摘要

Content-based vehicle retrieval in unconstrained environment plays an important role in surveillance systems. However, due to large variations in viewing angle/position, illumination, occlusion, and background, traditional vehicle retrieval is extremely challenging. We approach this problem in a different way by rectifying vehicles from disparate views into the same reference view and searching the vehicles based on informative parts such as grille, lamp, and wheel. To extract those parts, we fit 3-D vehicle models to a 2-D image using active shape model. In the experiments, we compare different 3-D model fitting approaches and verify that the impact of part rectification on the content-based vehicle retrieval performance is significant. We propose a model fitting approach with weighted Jacobian system which leverages the prior knowledge of part information and shows promising improvements. Then, we use pyramid histogram of orientation feature to describe rectified parts (e.g., grille, wheel, lamp). We compute mean average precision of vehicle retrieval with L1 distance on NetCarShow300 dataset, a new challenging dataset we construct. We conclude that it benefits more from the fusion of informative rectified parts (e.g., grille, lamp, wheel) than a whole vehicle image described by SIFT feature for content-based vehicle retrieval.
机译:在不受限制的环境中基于内容的车辆检索在监视系统中起着重要的作用。然而,由于视角/位置,照明,遮挡和背景的巨大变化,传统的车辆检索非常具有挑战性。我们通过将车辆从不同的视图改正为相同的参考视图,并根据诸如格栅,灯和车轮之类的信息搜索车辆来以不同的方式解决此问题。为了提取这些零件,我们使用主动形状模型将3-D车辆模型拟合为2-D图像。在实验中,我们比较了不同的3-D模型拟合方法,并验证了零件校正对基于内容的车辆检索性能的影响是重大的。我们提出了一种利用加权雅可比系统的模型拟合方法,该方法利用了零件信息的先验知识并显示出可喜的改进。然后,我们使用方向特征的金字塔直方图来描述整流后的零件(例如,格栅,车轮,灯)。我们在NetCarShow300数据集(我们构建的新的具有挑战性的数据集)上计算了具有L1距离的车辆检索的平均平均精度。我们得出的结论是,与基于内容的车辆检索的SIFT功能所描述的整个车辆图像相比,它融合了信息整流部分(例如格栅,灯,车轮)的更多好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号