首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Visibility Restoration of Single Hazy Images Captured in Real-World Weather Conditions
【24h】

Visibility Restoration of Single Hazy Images Captured in Real-World Weather Conditions

机译:在真实世界的天气条件下捕获的单个模糊图像的可见性恢复

获取原文
获取原文并翻译 | 示例

摘要

The visibility of outdoor images captured in inclement weather is often degraded due to the presence of haze, fog, sandstorms, and so on. Poor visibility caused by atmospheric phenomena in turn causes failure in computer vision applications, such as outdoor object recognition systems, obstacle detection systems, video surveillance systems, and intelligent transportation systems. In order to solve this problem, visibility restoration (VR) techniques have been developed and play an important role in many computer vision applications that operate in various weather conditions. However, removing haze from a single image with a complex structure and color distortion is a difficult task for VR techniques. This paper proposes a novel VR method that uses a combination of three major modules: 1) a depth estimation (DE) module; 2) a color analysis (CA) module; and 3) a VR module. The proposed DE module takes advantage of the median filter technique and adopts our adaptive gamma correction technique. By doing so, halo effects can be avoided in images with complex structures, and effective transmission map estimation can be achieved. The proposed CA module is based on the gray world assumption and analyzes the color characteristics of the input hazy image. Subsequently, the VR module uses the adjusted transmission map and the color-correlated information to repair the color distortion in variable scenes captured during inclement weather conditions. The experimental results demonstrate that our proposed method provides superior haze removal in comparison with the previous state-of-the-art method through qualitative and quantitative evaluations of different scenes captured during various weather conditions.
机译:由于存在阴霾,大雾,沙尘暴等,在恶劣天气下拍摄的室外图像的可见性通常会降低。由大气现象引起的可见性差又导致计算机视觉应用程序出现故障,例如室外物体识别系统,障碍物检测系统,视频监视系统和智能运输系统。为了解决此问题,已经开发了能见度恢复(VR)技术,并且在许多在各种天气条件下运行的计算机视觉应用程序中发挥着重要作用。但是,对于VR技术而言,从具有复杂结构和颜色失真的单个图像中去除雾霾是一项艰巨的任务。本文提出了一种新颖的VR方法,该方法结合了三个主要模块:1)深度估计(DE)模块; 2)颜色分析(CA)模块; 3)VR模块。提出的DE模块利用了中值滤波技术,并采用了我们的自适应伽马校正技术。这样,可以避免具有复杂结构的图像中的光晕效应,并且可以实现有效的透射图估计。所提出的CA模块基于灰色世界假设,并分析了输入模糊图像的颜色特征。随后,VR模块使用调整后的传输图和颜色相关信息来修复恶劣天气条件下捕获的可变场景中的颜色失真。实验结果表明,通过定性和定量评估在各种天气条件下捕获的不同场景,我们提出的方法与以前的最新方法相比,具有更好的除雾效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号