首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >A Low-Complexity Pedestrian Detection Framework for Smart Video Surveillance Systems
【24h】

A Low-Complexity Pedestrian Detection Framework for Smart Video Surveillance Systems

机译:智能视频监控系统的低复杂度行人检测框架

获取原文
获取原文并翻译 | 示例

摘要

Pedestrian detection is a key problem in computer vision and is currently addressed with increasingly complex solutions involving compute-intensive features and classification schemes. In this scope, histogram of oriented gradients (HOG) in conjunction with linear support vector machine (SVM) classifier is considered to be the single most discriminative feature that has been adopted as a stand-alone detector as well as a key instrument in advance systems involving hybrid features and cascaded detectors. In this paper, we propose a pedestrian detection framework that is computationally less expensive as well as more accurate than HOG-linear SVM. The proposed scheme exploits the discriminating power of the locally significant gradients in building orientation histograms without involving complex floating point operations while computing the feature. The integer-only feature allows the use of powerful histogram inter-section kernel SVM classifier in a fast lookup-table-based implementation. Resultantly, the proposed framework achieves at least 3% more accurate detection results than HOG on standard data sets while being 1.8 and 2.6 times faster on conventional desktop PC and embedded ARM platforms, respectively, for a single scale pedestrian detection on VGA resolution video. In addition, hardware implementation on Altera Cyclone IV field-programmable gate array results in more than 40% savings in logic resources compared with its HOG-linear SVM competitor. Hence, the proposed feature and classification setup is shown to be a better candidate as the single most discriminative pedestrian detector than the currently accepted HOG-linear SVM.
机译:行人检测是计算机视觉中的关键问题,目前正通过涉及计算密集型功能和分类方案的日益复杂的解决方案来解决。在此范围内,定向梯度直方图(HOG)与线性支持向量机(SVM)分类器一起被认为是最独立的特征,已被用作独立检测器和先进系统中的关键仪器涉及混合功能和级联检测器。在本文中,我们提出了一种行人检测框架,该框架在计算上比HOG-linear SVM便宜,而且更准确。所提出的方案在建筑物特征直方图中利用了局部有效梯度的鉴别能力,而无需在计算特征时涉及复杂的浮点运算。仅整数功能允许在基于快速查找表的实现中使用功能强大的直方图相交内核SVM分类器。结果,对于VGA分辨率视频的单尺度行人检测,所提出的框架在标准数据集上的检测结果比HOG至少高出3%,而在常规台式PC和嵌入式ARM平台上分别比传统的台式机和嵌入式ARM平台快1.8和2.6倍。此外,与HOG线性SVM竞争对手相比,在Altera Cyclone IV现场可编程门阵列上执行硬件可以节省逻辑资源40%以上。因此,与当前接受的HOG线性SVM相比,拟议的特征和分类设置显示为更好的候选者,因为它是唯一的最具区别性的行人检测器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号