首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Tracking Social Groups Within and Across Cameras
【24h】

Tracking Social Groups Within and Across Cameras

机译:追踪摄像机内外的社交团体

获取原文
获取原文并翻译 | 示例

摘要

We propose a method for tracking groups from single and multiple cameras with disjointed fields of view. Our formulation follows the tracking-by-detection paradigm in which groups are the atomic entities and are linked over time to form long and consistent trajectories. To this end, we formulate the problem as a supervised clustering problem in which a structural SVM classifier learns a similarity measure appropriate for group entities. Multicamera group tracking is handled inside the framework by adopting an orthogonal feature encoding that allows the classifier to learn inter- and intra-camera feature weights differently. Experiments were carried out on a novel annotated group tracking data set, the DukeMTMC-Groups data set. Since this is the first data set on the problem, it comes with the proposal of a suitable evaluation measure. Results of adopting learning for the task are encouraging, scoring a +15% improvement in F1 measure over a nonlearning-based clustering baseline. To the best of our knowledge, this is the first proposal of its kind dealing with multicamera group tracking.
机译:我们提出了一种方法,用于从视野不相交的单个和多个摄像机中跟踪组。我们的公式遵循“检测跟踪”范式,其中组是原子实体,随着时间的流逝而链接在一起,以形成长而一致的轨迹。为此,我们将问题表述为监督聚类问题,其中结构化SVM分类器学习适用于组实体的相似性度量。多摄像机组跟踪是在框架内部通过采用正交特征编码来处理的,该编码允许分类器以不同方式学习摄像机间和摄像机内特征权重。实验是在新型带注释的组跟踪数据集DukeMTMC-Groups数据集上进行的。由于这是有关该问题的第一个数据集,因此提出了适当的评估措施。采用学习来完成这项任务的结果令人鼓舞,与基于非学习的聚类基线相比,F1测评的得分提高了+ 15%。据我们所知,这是处理多摄像机群组跟踪的同类提案中的第一个。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号