首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >SiamFPN: A Deep Learning Method for Accurate and Real-Time Maritime Ship Tracking
【24h】

SiamFPN: A Deep Learning Method for Accurate and Real-Time Maritime Ship Tracking

机译:Siamfpn:一种深入的学习方法,可准确和实时海运船舶跟踪

获取原文
获取原文并翻译 | 示例

摘要

Visual object tracking plays an essential role in various maritime applications. However, most of the existing tracking methods belong to generative models, which only focus on the features of the object and require the target has significant visual saliency for accurate tracking. While the visual saliency is available in most of the common tracking conditions, these methods may fail when facing challenging situations. In this paper, a deep learning based tracking method is proposed to track maritime ships, namely, SiamFPN. In SiamFPN, a modified Siamese Network is combined with multi-RPNs to build a tracking pipeline. Concretely, A ResNet-50 with an FPN structure is used as the CNN of the detection subnetwork of Siamese, and a template subnetwork is parallel to the detection. In order to strengthen the discriminative ability, three RPNs are deployed to process the output of Siamese Network. Moreover, a historical impacts based proposal selection method is developed for selecting correct target areas. Finally, a dataset is collected for training and testing SiamFPN and validating our excellent performance over the other four recent SOTA trackers. Based on the experimental results, we achieved 74 % on average accuracy with real-time speed.
机译:Visual Object跟踪在各种海上应用程序中起重要作用。但是,大多数现有的跟踪方法都属于生成模型,只关注对象的特征,并且需要目标具有显着的视力以准确跟踪。虽然在大多数公共跟踪条件下可用视觉显着性,但在面临具有挑战性的情况下,这些方法可能会失败。在本文中,提出了一种基于深度学习的跟踪方法来跟踪海上船舶,即Siamfpn。在SiamFPN中,修改后的暹罗网络与多RPN组合以构建跟踪管道。具体地,具有FPN结构的ResET-50用作暹罗检测子网的CNN,模板子网并行于检测。为了加强歧视能力,部署了三个RPN以处理暹罗网络的产出。此外,开发了一种基于历史影响的提案选择方法,用于选择正确的目标区域。最后,收集数据集以进行培训和测试SIAMFPN并验证我们对最近四个SOTA跟踪器的出色性能。根据实验结果,我们以实时速度平均精度实现了74%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号