首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Real-Time and Low-Memory Multi-Faces Detection System Design With Naive Bayes Classifier Implemented on FPGA
【24h】

Real-Time and Low-Memory Multi-Faces Detection System Design With Naive Bayes Classifier Implemented on FPGA

机译:使用Naive Bayes Classifier实现的实时和低记忆多面检测系统设计在FPGA上实现

获取原文
获取原文并翻译 | 示例

摘要

In recent years, face detection has been widely applied to a variety of fields, such as face recognition, image focusing, and surveillance systems. This study proposes a real-time multi-faces detection system based on naive Bayesian classifier using Field Programmable Gate Array (FPGA). The system includes three main parts, feature extraction, candidate face detection, and false elimination. First, downscale the image to the image pyramid and extract local binary image features from each downscaling image. With the bit-plane slicing for Local Binary Pattern (LBP) can save the memory consumption and speed up the computation. Then, adopt the naive Bayesian classifier to identify candidate faces. Finally use skin color filter and face overlapping elimination to remove false positives. The experimental results show that the accuracy rate is up to 96.14% in face detection, which demonstrates the proposed real-time multi-faces detection system is indeed effective and efficient.
机译:近年来,面部检测已被广泛应用于各种领域,例如面部识别,图像聚焦和监视系统。本研究提出了一种基于现场可编程门阵列(FPGA)的Naive Bayesian分类器的实时多面检测系统。该系统包括三个主要部件,特征提取,候选面部检测和虚假消除。首先,将图像降低到图像金字塔并从每个缩小图像中提取本地二进制图像特征。对于本地二进制模式(LBP)的位平面切片可以节省内存消耗并加快计算。然后,采用朴素的贝叶斯分类器来识别候选人面孔。最后使用肤色过滤器和面部重叠消除以消除误报。实验结果表明,面部检测中的精度率​​高达96.14%,这表明所提出的实时多面检测系统确实有效且有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号