首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Unsupervised Blind Image Quality Evaluation via Statistical Measurements of Structure, Naturalness, and Perception
【24h】

Unsupervised Blind Image Quality Evaluation via Statistical Measurements of Structure, Naturalness, and Perception

机译:通过结构,自然和感知的统计测量无监督盲目图像质量评估

获取原文
获取原文并翻译 | 示例

摘要

Most existing blind image quality assessment (BIQA) methods belong to supervised methods, which always need a large number of image samples and expensive subjective scores for training a quality prediction model. In this paper, we focus our attention on the unsupervised BIQA methods and put forward a novel unsupervised approach. The main idea of our method is to quantify the image quality degradation through measuring the structure, naturalness, and the perception quality variations of the distorted image from the pristine natural images. In specific, the structure variation is captured by the deviations of the image phase congruency and gradients distributions. The naturalness variation is characterized through the distributions variations of the locally mean subtracted and contrast normalized (MSCN) coefficients and the products of pairs of the adjacent MSCN coefficients. Compared with existing unsupervised methods, we initiatively introduce the perception quality measurement into the construction of unsupervised BIQA method, which is conducted by characterizing the prediction discrepancy between the image and its brain prediction based on the free-energy principle in the newly revealed brain theory. After feature extraction, we learn a pristine multivariate Gaussian (MVG) model with the extracted features from a set of pristine natural images. The quality of a new image is finally defined as the distance between its MVG model and the learned pristine MVG model. The extensive experiments conducted on LIVE, TID2013, CSIQ, Toyama, CID2013, and the Waterloo Exploration databases demonstrate that the proposed method achieves comparative prediction performance with the state-of-the-art BIQA methods.
机译:大多数现有的盲图像质量评估(BIQA)方法属于监督方法,始终需要大量的图像样本和用于训练质量预测模型的昂贵主观评分。在本文中,我们将注意力集中在无监督的BIQA方法上,并提出了一种新颖的无人监督方法。我们的方法的主要思想是通过测量来自原始自然图像的结构,自然度和扭曲图像的扭曲图像的感知质量变化来量化图像质量劣化。具体地,通过图像相等和梯度分布的偏差捕获结构变化。自然变化的特征在于局部平均减去和对比标准化(MSCN)系数的分布变化和相邻MSCN系数对的产物。与现有的无监督方法相比,我们初始化了对无监督的施工施工的感知质量测量,这是通过在新揭示的大脑理论中的自由能原理基于自由能原理的图像及其脑预测之间的预测差异来进行。在特征提取之后,我们从一组原始自然图像中使用提取的特征学习原始多元高斯(MVG)模型。最终将新图像的质量定义为其MVG模型与学习的原始MVG模型之间的距离。在Live,TID2013,CSIQ,Toyama,CID2013和Waterloo勘探数据库中进行的广泛实验表明,该方法与最先进的BIQA方法实现了比较预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号