首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Group Low-Rank Representation-Based Discriminant Linear Regression
【24h】

Group Low-Rank Representation-Based Discriminant Linear Regression

机译:基于低秩表示的基于低秩的判别线性回归

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel least square regression method, named group low-rank representation-based discriminant linear regression (GLRRDLR), is proposed for multi-class classification. Unlike the conventional linear regression methods, the proposed method aims to learn a more discriminative projection. Specially, two main techniques are adopted to improve the discriminability of the projection. The first approach is to make the transformed samples locate in their own subspace by introducing a group low-rank constraint to the model, such that the distance between samples from the same class can be decreased greatly. The second approach is to simultaneously learn a discriminative target matrix for regression. The extensive experimental results show that the proposed method performs much better than the state-of-the-art methods, which proves the effectiveness of the above two approaches in improving the discriminability of the projection.
机译:在本文中,提出了一种新颖的最小二乘回归方法,名为基于低秩表示的判别线性回归(GLRRDLR),用于多级分类。与传统的线性回归方法不同,所提出的方法旨在学习更辨别的投影。特别地,采用了两种主要技术来提高投影的可怜性。第一种方法是使变换的样本通过向模型引入组低级约束来定位在其自己的子空间中,使得来自同一类的样本之间的距离可以大大降低。第二种方法是同时学习回归的鉴别目标矩阵。广泛的实验结果表明,该方法比现有技术的方法更好地表现出上述两种方法的有效性,从而提高了投影的可辨性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号