首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Coupled Bilinear Discriminant Projection for Cross-View Gait Recognition
【24h】

Coupled Bilinear Discriminant Projection for Cross-View Gait Recognition

机译:耦合双线性判别投影,用于跨视图步态识别

获取原文
获取原文并翻译 | 示例

摘要

A problem that hinders good performance of general gait recognition systems is that the appearance features of gaits are more affected-prone by views than identities, especially when the walking direction of the probe gait is different from the register gait. This problem cannot be solved by traditional projection learning methods because these methods can learn only one projection matrix, and thus for the same subject, it cannot transfer cross-view gait features into similar ones. This paper presents an innovative method to overcome this problem by aligning gait energy images (GEIs) across views with the coupled bilinear discriminant projection (CBDP). Specifically, the CBDP generates the aligned gait matrix features for two views with two sets of bilinear transformation matrices, so that the original GEIs' spatial structure information can be preserved. By iteratively maximizing the ratio of inter-class distance metric to intra-class distance metric, the CBDP can learn the optimal matrix subspace where the GEIs across views are aligned in both horizontal and vertical coordinates. Therefore, the CBDP is also able to avoid the under-sample problem. We also theoretically prove that the upper and lower bounds of the objective function sequence of the CBDP are both monotonically increasing, so the convergence of the CBDP is demonstrated. In the terms of accuracy, the comparative experiments on the CASIA (B) and OU-ISIR gait databases show that our method is superior to the state-of-the-art cross-view gait recognition methods. More impressively, encouraging performance is obtained by our method even in matching a lateral-view gait with a frontal-view gait.
机译:妨碍通用步态识别系统的良好性能的问题是,通过观点而言,Gaits的外观特征比标识更容易受到俯视,尤其是当探测步态的步进方向与寄存器步态不同时。传统投影学习方法无法解决此问题,因为这些方法只能学习一个投影矩阵,因此对于同一主题,因此不能将跨视图步态特征转移到类似的主题中。本文介绍了一种创新方法,通过将步态能量图像(GEIS)对准与耦合的双线性判别投影(CBDP)对准观点来克服该问题。具体地,CBDP为具有两组双线性变换矩阵的两个视图产生对准的步态矩阵特征,从而可以保留原始GEIS的空间结构信息。通过迭代地最大化帧内距离度量与类距离度量的比率,CBDP可以学习最佳矩阵子空间,其中跨视图的GEIS在水平和垂直坐标中对齐。因此,CBDP也能够避免样本问题。我们还理论上证明了CBDP的目标函数序列的上限和下限都是单调增加的,因此证明了CBDP的收敛。在准确性方面,CASIA(B)和OU-ISIR步态数据库的比较实验表明,我们的方法优于最先进的巧克力识别方法。更令人印象深刻地,令人鼓舞的表现是通过我们的方法获得的,即使在与前视图步态相匹配的横向视图步态中也可以获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号