首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >High-Definition Video Compression System Based on Perception Guidance of Salient Information of a Convolutional Neural Network and HEVC Compression Domain
【24h】

High-Definition Video Compression System Based on Perception Guidance of Salient Information of a Convolutional Neural Network and HEVC Compression Domain

机译:基于卷积神经网络和HEVC压缩域的显着信息的知觉指导的高清视频压缩系统

获取原文
获取原文并翻译 | 示例

摘要

The new generation of the high-efficiency video coding (HEVC) video coding standard has improved compression performance and brought considerable coding complexity. Therefore, reducing the perception redundancy of video to obtain a better compression effect is the new direction of video development at present. In this paper, the HEVC is improved and enhanced from the aspects of a video saliency algorithm based on an attention mechanism and a video compression algorithm based on perception priority. In terms of video saliency, this paper proposes a spatial saliency algorithm based on a convolutional neural network and a temporal saliency algorithm based on motion vector. The saliency algorithm can combine the motion estimation results of each block during the HEVC compression on the basis of convolutional neural network and carry out adaptive dynamic fusion of the two, to complete the saliency map of the input video. In the aspect of the video compression algorithm with perception priority, this paper proposes a more flexible QP selection method, which selects its corresponding QP according to the saliency value of CU. At the same time, we propose a new rate-distortion optimization algorithm, which integrates the current block's saliency feature into the traditional rate-distortion calculation method, to guide the allocation of bits and achieve the purpose of perception priority. The experimental results proved the superiority of the proposed method over the state-of-the-art perceptual coding algorithms in terms of saliency detection and perceptual compression quality.
机译:新一代高效视频编码(HEVC)视频编码标准具有改进的压缩性能,并带来了相当大的编码复杂性。因此,降低视频的感知冗余,以获得更好的压缩效果是目前的视频开发的新方向。本文从基于感知优先级的关注机制和视频压缩算法改进了HEVC的改进和增强了从视频显着算法的方面。在视频显着性方面,本文提出了一种基于卷积神经网络的空间显着性算法和基于运动矢量的时间显着算法。显着性算法基于卷积神经网络的HEVC压缩期间可以组合每个块的运动估计结果,并执行两者的自适应动态融合,以完成输入视频的显着图。在具有感知优先级的视频压缩算法的方面中,本文提出了一种更灵活的QP选择方法,其根据CU的显着性值选择其对应的QP。同时,我们提出了一种新的速率失真优化算法,它将当前块的显着特征集成到传统的速率 - 失真计算方法中,以指导位分配并达到感知优先级的目的。实验结果证明了在显着性检测和感知压缩质量方面的最先进的感知编码算法中提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号