首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Video Summarization With Attention-Based Encoder–Decoder Networks
【24h】

Video Summarization With Attention-Based Encoder–Decoder Networks

机译:基于关注的编码器解码器网络的视频概述

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of supervised video summarization by formulating it as a sequence-to-sequence learning problem, where the input is a sequence of original video frames, and the output is a keyshot sequence. Our key idea is to learn a deep summarization network with attention mechanism to mimic the way of selecting the keyshots of human. To this end, we propose a novel video summarization framework named attentive encoder-decoder networks for video summarization (AVS), in which the encoder uses a bidirectional long short-term memory (BiLSTM) to encode the contextual information among the input video frames. As for the decoder, two attention-based LSTM networks are explored by using additive and multiplicative objective functions, respectively. Extensive experiments are conducted on two video summarization benchmark datasets, i.e., SumMe and TVSum. The results demonstrate the superiority of the proposed AVS-based approaches against the state-of-the-art approaches, with remarkable improvements on both datasets.
机译:本文通过将其作为序列到序列学习问题的序列来解决监督视频摘要问题,其中输入是原始视频帧的序列,输出是键序列。我们的主要思想是通过注意机制来模仿选择人类钥匙的方式,学习深度概括网络。为此,我们提出了一种新的视频摘要框架,用于视频摘要(AVS)的专注编码器 - 解码器网络,其中编码器使用双向长期短期存储器(BILSTM)来对输入视频帧之间的上下文信息进行编码。至于解码器,通过使用添加剂和乘法物理函数来探索基于关注的LSTM网络。广泛的实验是在两个视频摘要基准数据集中进行的,即Summe和TVSUM进行。结果表明,基于AVS的拟议方法的优势在于最先进的方法,在两个数据集中具有显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号