首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >A Novel Patch Variance Biased Convolutional Neural Network for No-Reference Image Quality Assessment
【24h】

A Novel Patch Variance Biased Convolutional Neural Network for No-Reference Image Quality Assessment

机译:一种新的补丁方差偏置卷积神经网络,用于无参考图像质量评估

获取原文
获取原文并翻译 | 示例

摘要

Deep convolutional neural networks (CNNs) have been successfully applied on no-reference image quality assessment (NR-IQA) with respect to human perception. Most of these methods deal with small image patches and use the average score of the test patches for predicting the whole image quality. We discovered that image patches from homogenous regions are unreliable for both neural network training and final image quality score estimation. In addition, image patches with complex structures have much higher chances of achieving better image quality prediction. Based on these findings, we enhanced the conventional CNN-based NR-IQA algorithm to avoid homogenous patches for the network training and quality score estimation. Moreover, we also use a variance-based weighting average to bias the final image quality score to the patches with complex structure. The experimental results show that this simple approach can achieve state-of-the-art performance compared with well-known NR-IQA algorithms.
机译:深度卷积神经网络(CNNS)已经成功地应用于人类感知的无参考图像质量评估(NR-IQA)。这些方法中的大多数方法处理小型图像修补程序,并使用测试贴片的平均分数来预测整个图像质量。我们发现,对于神经网络训练和最终图像质量分数估计,来自均匀区域的图像补丁是不可靠的。此外,具有复杂结构的图像贴片具有更高的机会实现更好的图像质量预测。基于这些发现,我们增强了传统的基于CNN的NR-IQA算法,以避免网络培训和质量分数估计的均匀斑块。此外,我们还使用基于方差的权重平均值来将最终图像质量分数偏置到具有复杂结构的贴片。实验结果表明,与众所周知的NR-IQA算法相比,这种简单的方法可以实现最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号