首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Incremental Tensor-Based Completion Method for Detection of Stationary Foreground Objects
【24h】

Incremental Tensor-Based Completion Method for Detection of Stationary Foreground Objects

机译:基于增量张量的静止前景物体检测方法

获取原文
获取原文并翻译 | 示例

摘要

In tasks such as abandoned luggage detection and stopped car detection, stationary foreground objects (SFOs) need to be detected and properly classified in real time. Different methods have been proposed to detect SFOs, but they are mainly focused on certain types of objects. In this paper, an incremental singular value decomposition-based method is presented to detect all types of SFOs such as abandoned objects and removed objects. The proposed method decomposes the video tensor spatiotemporally and divides it into background and foreground components. An appropriate analysis is applied to the foreground tensor to define a pixel time series of each stationary foreground category. Such analysis leads to the fact that SFOs can be detected easily owing to their continuous persistence in the decomposed foreground tensor. Furthermore, the unique structure of the pixel time series of each category allows identifying the category of the detected objects, whether they are abandoned or removed, and detecting the exact time of the start and end of each event. The results demonstrate that the proposed method achieves a superior performance in detecting SFOs at both object and pixel levels. In addition, the proposed method is computationally simple, and its complexity is lower compared to other approaches; hence, it can adequately satisfy real-time requirements.
机译:在诸如遗弃行李检测和停车检测之类的任务中,需要对静止的前景物体(SFO)进行检测并进行实时正确分类。已经提出了不同的方法来检测SFO,但是它们主要集中在某些类型的对象上。在本文中,提出了一种基于增量奇异值分解的方法来检测所有类型的SFO,例如废弃的物体和移除的物体。所提出的方法对视频张量进行时空分解,并将其分为背景和前景分量。将适当的分析应用于前景张量,以定义每个固定前景类别的像素时间序列。这种分析导致以下事实:由于SFO在分解的前景张量中持续存在,因此可以轻松检测到。此外,每个类别的像素时间序列的独特结构允许识别检测到的物体的类别(是否废弃或移除),并检测每个事件开始和结束的确切时间。结果表明,所提出的方法在物体和像素级别的SFO检测方面均具有出色的性能。另外,该方法计算简单,与其他方法相比,复杂度较低。因此,它可以充分满足实时要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号