首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Single Image Depth Estimation With Normal Guided Scale Invariant Deep Convolutional Fields
【24h】

Single Image Depth Estimation With Normal Guided Scale Invariant Deep Convolutional Fields

机译:具有法向制导尺度不变深卷积场的单图像深度估计

获取原文
获取原文并翻译 | 示例

摘要

Estimating scene depth from a single image can be widely applied to understand 3D environments due to the easy access of the images captured by consumer-level cameras. Previous works exploit conditional random fields (CRFs) to estimate image depth, where neighboring pixels (superpixels) with similar appearances are constrained to share the same depth. However, the depth may vary significantly in the slanted surface, thus leading to severe estimation errors. In order to eliminate those errors, we propose a superpixel-based normal guided scale invariant deep convolutional field by encouraging the neighboring superpixels with similar appearance to lie on the same 3D plane of the scene. In doing so, a depth-normal multitask CNN is introduced to produce the superpixel-wise depth and surface normal predictions simultaneously. To correct the errors of the roughly estimated superpiexl-wise depth, we develop a normal guided scale invariant CRF (NGSI-CRF). NGSI-CRF consists of a scale invariant unary potential that is able to measure the relative depth between superpixels as well as the absolute depth of superpixels, and a normal guided pairwise potential that constrains spatial relationships between superpixels in accordance with the 3D layout of the scene. In other words, the normal guided pairwise potential is designed to smooth the depth prediction without deteriorating the 3D structure of the depth prediction. The superpixel-wise depth maps estimated by NGSI-CRF will be fed into a pixel-wise refinement module to produce a smooth fine-grained depth prediction. Furthermore, we derive a closed-form solution for the maximum a posteriori (MAP) inference of NGSI-CRF. Thus, our proposed network can be efficiently trained in an end-to-end manner. We conduct our experiments on various datasets, such as NYU-D2, KITTI, and Make 3D. As demonstrated in the experimental results, our method achieves superior performance in both indoor and outdoor scenes.
机译:由于可以轻松访问消费级相机捕获的图像,因此从单个图像估计景深可以广泛应用于理解3D环境。先前的工作利用条件随机场(CRF)来估计图像深度,其中具有相似外观的相邻像素(超像素)被约束为共享相同的深度。但是,倾斜表面的深度可能会发生显着变化,从而导致严重的估计误差。为了消除这些错误,我们通过鼓励具有相似外观的相邻超像素位于场景的同一3D平面上,提出了基于超像素的法向制导尺度不变的深度卷积场。为此,引入了深度法线多任务CNN以同时生成超像素级深度和表面法线预测。为了纠正粗略估计的超螺旋深度的误差,我们开发了一个正常的导标不变CRF(NGSI-CRF)。 NGSI-CRF由能够测量超像素之间的相对深度以及超像素绝对深度的比例不变一元电势以及根据场景的3D布局约束超像素之间空间关系的法向引导成对势构成。换句话说,法向引导的成对电位被设计成平滑深度预测而不会恶化深度预测的3D结构。 NGSI-CRF估计的超像素深度图将被馈送到像素精细化模块中,以产生平滑的细粒度深度预测。此外,我们为NGSI-CRF的最大后验(MAP)推导得出了一种封闭形式的解决方案。因此,我们提出的网络可以以端到端的方式有效地训练。我们在各种数据集上进行实验,例如NYU-D2,KITTI和Make 3D。如实验结果所示,我们的方法在室内和室外场景中均具有出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号