首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >Extended Hebbian learning for blind separation of complex-valued sources
【24h】

Extended Hebbian learning for blind separation of complex-valued sources

机译:扩展的Hebbian学习可用于复杂值源的盲分离

获取原文
获取原文并翻译 | 示例

摘要

The aim of this work is to present a nonlinear extension to Sanger's generalized Hebbian learning algorithm for complex-valued signal processing by neural networks. A possible choice of the involved nonlinearity is discussed by recalling the Sudjianto-Hassoun interpretation of nonlinear Hebbian learning. An extension of this interpretation to the complex-valued case leads to a Rayleigh nonlinearity, that allows for separating mixed independent complex-valued circular source signals.
机译:这项工作的目的是提出Sanger广义Hebbian学习算法的非线性扩展,用于通过神经网络处理复数值信号。回顾非线性Hebbian学习的Sudjianto-Hassoun解释,讨论了涉及的非线性的可能选择。这种解释扩展到复数值情况会导致瑞利非线性,从而可以分离混合的独立复数值圆形源信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号