首页> 外文期刊>IEEE transactions on circuits and systems. II, Express briefs >Neural-network-based adaptive baseband predistortion method for RF power amplifiers
【24h】

Neural-network-based adaptive baseband predistortion method for RF power amplifiers

机译:基于神经网络的射频功率放大器自适应基带预失真方法

获取原文
获取原文并翻译 | 示例

摘要

An adaptive baseband predistortion method for RF power amplifier (PA) linearization is proposed and experimentally demonstrated. The predistortion component is implemented by a single-input dual-output multilayer perceptron (MLP). Both amplitude-to-amplitude and amplitude-to-phase distortion products are compensated by backpropagation training of the neural network including the response of the PA. Effects of modulator and demodulator imperfections on system performance are examined. Measurements on a system prototype reveal a significant linearity improvement that reaches 25 dB.
机译:提出了一种用于射频功率放大器(PA)线性化的自适应基带预失真方法,并进行了实验验证。预失真组件由单输入双输出多层感知器(MLP)实现。幅度到幅度和幅度到相位失真乘积都通过包括PA响应在内的神经网络的反向传播训练来补偿。研究了调制器和解调器缺陷对系统性能的影响。对系统原型的测量表明,线性度显着提高,达到25 dB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号