首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Current-Mode Analog Adaptive Mechanism for Ultra-Low-Power Neural Networks
【24h】

Current-Mode Analog Adaptive Mechanism for Ultra-Low-Power Neural Networks

机译:超低功耗神经网络的电流模式模拟自适应机制

获取原文
获取原文并翻译 | 示例

摘要

Neural networks (NNs) implemented at the transistor level are powerful adaptive systems. They can perform hundreds of operations in parallel but at the expense of a large number of building blocks. In the case of analog realization, an extremely low chip area and low power dissipation can be achieved. To accomplish this, the building blocks should be simple. This brief presents a new current-mode low-complexity flexible adaptive mechanism (ADM) with a strongly reduced leakage in analog memory. Input signals ranging from 0.5 to 20 $muhbox{A}$ are held for 10–50 ms, with the leakage rate from 0.2%/ms to 0.04%/ms, respectively, depending on temperature. A small storage capacitor of 200 fF enables a short write time ( $<$ 100 ns). A single ADM cell occupies 1400 $muhbox{m}^{2}$ when realized in the Taiwan Semiconductor Manufacturing Company Ltd. CMOS 0.18-$muhbox{m}$ technology. The potential application of this NN is envisioned in a mobile platform based on a wireless sensor network to be used for online analysis of electrocardiography signals.
机译:在晶体管级别实现的神经网络(NN)是功能强大的自适应系统。他们可以并行执行数百个操作,但要付出大量构建基块的代价。在模拟实现的情况下,可以实现极小的芯片面积和低功耗。为此,构件应该很简单。本简介介绍了一种新型的电流模式低复杂度灵活自适应机制(ADM),该机制可大大减少模拟存储器中的泄漏。输入信号的范围从0.5到20 $ muhbox {A} $保持10–50 ms,根据温度的不同,泄漏率分别从0.2%/ ms到0.04%/ ms。 200 fF的小存储电容器可实现较短的写入时间($ <$ 100 ns)。在台湾半导体制造有限公司中实现时,单个ADM单元占用1400美元/盒{m} ^ {2} $。CMOS 0.18-美元/盒{m} $技术。可以在基于无线传感器网络的移动平台上设想该NN的潜在应用,以用于心电图信号的在线分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号