首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Digital Predistortion for Power Amplifier Based on Sparse Bayesian Learning
【24h】

Digital Predistortion for Power Amplifier Based on Sparse Bayesian Learning

机译:基于稀疏贝叶斯学习的功率放大器数字预失真

获取原文
获取原文并翻译 | 示例

摘要

In this brief, a sparse-Bayesian-learning algorithm is applied to estimate the coefficients of the power amplifier (PA) behavioral models and inverse models from the view of probability. With this sparse learning method, the needed number of samplings can be reduced significantly. In addition, it also provides researchers with ideas that obtain the needed subspace of the preselected model. The performance of the algorithm is validated experimentally on a gallium nitride (GaN) PA, and the signal used to test the proposed approach is an Long Term Evolution (LTE) signal. A comparison with the state-of-the-art estimation algorithm in an open-loop digital-predistortion system is also presented, and the vast majority of tests show that the number of model coefficients is reduced by at least 50%.
机译:在本文中,从概率角度出发,应用稀疏贝叶斯学习算法来估计功率放大器(PA)行为模型和逆模型的系数。使用这种稀疏的学习方法,可以大大减少所需的采样数量。此外,它还为研究人员提供了获取预选模型所需子空间的想法。该算法的性能已在氮化镓(GaN)PA上进行了实验验证,用于测试所提出方法的信号是长期演进(LTE)信号。还提出了与开环数字预失真系统中的最新估计算法的比较,并且绝大多数测试表明,模型系数的数量至少减少了50%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号