首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >FSRFT—Fast Simplified Real Frequency Technique via Selective Target Data Approach for Broadband Double Matching
【24h】

FSRFT—Fast Simplified Real Frequency Technique via Selective Target Data Approach for Broadband Double Matching

机译:FSRFT-通过选择性目标数据方法实现宽带双匹配的快速简化实频技术

获取原文
获取原文并翻译 | 示例

摘要

This brief introduces a broadband double-matching (DM) solver called fast simplified real frequency technique (FSRFT). FSRFT is essentially a greatly accelerated variant of the well-known classical simplified real frequency technique (SRFT). The basic idea that turns the classical SRFT into a “fast” SRFT relies on two main approaches: the selective target data approach (STDA) and the constraint optimization approach (COA). STDA constructs an optimization target data set formed of only critically selected target data whose element number is equal to or slightly greater than the order of the system unknowns n plus 1, n+1. In order to exhibit speed performance comparison between SRFT and FSRFT, an example design is considered. An exemplary DM problem, dealing with an n=6th order low-pass Chebyshev-type equalizer design to match the given generator and load impedances, has been solved by SRFT within 29 s using 90 target data in a typical computer—e.g., Intel 2.20-GHz i7 CPU with 8-GB RAM. On the other hand, the same problem has been solved by the newly proposed FSRFT within only 0.6 s using only n+1=7 critically selected target data in the same computer. FSRFT introduced herein works in any domain, i.e., lumped, distributed, and mixed.
机译:本简介介绍了称为快速简化实频率技术(FSRFT)的宽带双匹配(DM)求解器。 FSRFT本质上是众所周知的经典简化实频率技术(SRFT)的极大改进。将经典SRFT转变为“快速” SRFT的基本思想依赖于两种主要方法:选择性目标数据方法(STDA)和约束优化方法(COA)。 STDA构造一个优化目标数据集,该优化目标数据集仅由元素数等于或略大于系统未知数n加1,n + 1的关键选择的目标数据组成。为了展示SRFT和FSRFT之间的速度性能比较,考虑了一个示例设计。 SRFT在29 s内使用典型计算机(例如Intel 2.20)中的90个目标数据在29 s内解决了一个示例DM问题,该问题处理n = 6阶低通Chebyshev型均衡器设计以匹配给定的发生器阻抗和负载阻抗。具有8 GB RAM的-GHz i7 CPU。另一方面,新建议的FSRFT在同一计算机中仅使用n + 1 = 7个关键选择的目标数据,仅用0.6 s就解决了相同的问题。本文介绍的FSRFT在任何领域都适用,即集总,分布和混合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号