首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Channel Estimation for MmWave Massive MIMO With Hybrid Precoding Based on Log-Sum Sparse Constraints
【24h】

Channel Estimation for MmWave Massive MIMO With Hybrid Precoding Based on Log-Sum Sparse Constraints

机译:基于Log-Sum稀疏约束的混合预编码的MMWave大规模MIMO的信道估计

获取原文
获取原文并翻译 | 示例

摘要

Channel estimation is essential for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems with hybrid precoding. However, accurate channel estimation is a challenging task as the number of antennas is huge, while the number of RF chains is limited. Traditional methods of compressed sensing for channel estimation lead to serious loss of accuracy due to channel angle quantization. In this brief, we propose a new iterative reweight-based log-sum constraint channel estimation scheme. Specifically, we exploit the structure sparsity of the mmWave channels by formulating the channel estimation problem as an objective optimization problem. We utilize the log-sum as a constraint, via optimizing an objective function through the gradient descent method, the proposed algorithm can iteratively move the channel estimated angle-of-arrivals (AOAs) and angle-of-departures (AODs) towards the optimal solutions, and finally improve the angle estimation performance significantly. In addition, to guarantee the accuracy of channel estimation, we introduce a dynamic regularization factor to leverage between the channel sparsity and the data fitting error. Numerical experiments demonstrate that the proposed algorithm achieves better convergence behavior than conventional sparse signal recovery approaches.
机译:信道估计对于具有混合预编码的毫米波(MMWAVE)多输入多输出(MIMO)系统至关重要。然而,随着天线的数量巨大,准确的信道估计是一个具有挑战性的任务,而RF链的数量有限。信道估计的压缩传感方法导致由于信道角度量化引起的严重损失。在此简介中,我们提出了一种新的基于迭代重量的日志和约束信道估计方案。具体地,我们通过将信道估计问题作为客观优化问题来利用MMWAVE通道的结构稀疏性。我们利用LOG-SUM作为约束,通过通过梯度下降方法优化目标函数,所提出的算法可以迭代地将信道估计的到达角(AOAS)和偏离角度(AOD)朝向最佳方式移动解决方案,最后提高了角度估计性能。此外,为了保证信道估计的准确性,我们引入了动态正则化因子,以利用信道稀疏性和数据拟合误差。数值实验表明,所提出的算法比传统的稀疏信号恢复方法实现了更好的收敛行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号