首页> 外文期刊>IEEE transactions on circuits and systems. II, Express briefs >A Throughput-Optimized Channel-Oriented Processing Element Array for Convolutional Neural Networks
【24h】

A Throughput-Optimized Channel-Oriented Processing Element Array for Convolutional Neural Networks

机译:用于卷积神经网络的吞吐量优化的频道化处理元件阵列

获取原文
获取原文并翻译 | 示例

摘要

Over the past decade, significant developments have taken place in the field of deep learning. State-of-the-art convolutional neural networks (CNNs), a branch of deep learning, have been increasingly applied in various fields such as image classification, speech recognition, and natural language processing. Due to the high computational complexity of CNNs, lots of works have proposed their CNN accelerators to address this issue. Besides, a processing element (PE) array has been recently further focused and discussed since it is responsible for the entire computations as the core of CNN accelerators. Therefore, the specialized design of a PE array becomes one of the main researches on CNN accelerators for energy efficiency and high throughput. In this brief, a throughput-optimized PE array for CNNs based on the channel-oriented data pattern is proposed. The proposed PE array features fully PE interconnection which achieves scalability. Besides, any sized convolution can be processed in the PE array while maximizing the utilization of PEs by exploiting the channel-oriented data pattern. Compared to previous works, this brief achieves 1.22x and 1.25x improvement in the throughput density on AlexNet and VGG-16 respectively.
机译:在过去十年中,深入学习领域发生了重大发展。最先进的卷积神经网络(CNNS),深度学习的分支,已经越来越多地应用于图像分类,语音识别和自然语言处理等各种领域。由于CNN的计算复杂性高,许多作品提出了他们的CNN加速器来解决这个问题。此外,最近已经进一步聚焦并讨论了处理元件(PE)阵列,因为它负责整个计算作为CNN加速器的核心。因此,PE阵列的专业设计成为能源效率和高吞吐量的CNN加速器的主要研究之一。在此简述中,提出了一种基于频道导向的数据模式的CNNS的吞吐量优化PE阵列。所提出的PE阵列具有完全PE互连,实现可扩展性。此外,可以在PE阵列中处理任何大小的卷积,同时通过利用面向通道的数据模式来最大化PE的利用率。与以前的作品相比,此简要介绍了亚历尼网和VGG-16上的吞吐量密度1.22x和1.25倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号