首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Reconfigurable FPGA-Based K-Means/K-Modes Architecture for Network Intrusion Detection
【24h】

Reconfigurable FPGA-Based K-Means/K-Modes Architecture for Network Intrusion Detection

机译:基于FPGA的可重新配置的基于FPGA的K-Mean / K模式,用于网络入侵检测

获取原文
获取原文并翻译 | 示例

摘要

Over the years, the amount of data shared between users from different areas have grown considerably. Consequently, so did network attacks. Security monitoring strategies must classify information types on networks quickly and effectively. Intrusion Detection Systems have been proposed with Machine Learning techniques and High-Performance Computing to avoid security anomalies. Thus, FPGA devices are good candidates to improve performance and energy efficiency. In this brief, we propose a reconfigurable FPGA-based K-means/K-modes architecture to accelerate the data clustering for network intrusion detection. We evaluated our approach over NSL-KDD data set and the results showed that K-means and K-modes can achieve up to 15x and 994x more operations per Watt than parallel software versions.
机译:多年来,来自不同领域的用户之间共享的数据量大大增加。因此,网络攻击也是如此。安全监测策略必须快速有效地对网络上的信息类型进行分类。已经提出了机器学习技术和高性能计算的入侵检测系统,以避免安全异常。因此,FPGA器件是良好的候选者,以提高性能和能量效率。在此简介中,我们提出了一种可重新配置的基于FPGA的K-Mean / K模型架构,以加速网络入侵检测的数据聚类。我们在NSL-KDD数据集中评估了我们的方法,结果表明,K-Means和K模式可以比并行软件版本更高为每种瓦特的15倍和994倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号