首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Robust Polynomial Reconstruction via Chinese Remainder Theorem in the Presence of Small Degree Residue Errors
【24h】

Robust Polynomial Reconstruction via Chinese Remainder Theorem in the Presence of Small Degree Residue Errors

机译:存在小残差误差的中国余数定理的鲁棒多项式重构

获取原文
获取原文并翻译 | 示例

摘要

Based on unique decoding of the polynomial residue code with non-pairwise coprime moduli, a polynomial with degree less than that of the least common multiple of all the moduli can be accurately reconstructed when the number of residue errors is less than half the minimum distance of the code. However, once the number of residue errors is beyond half the minimum distance of the code, the unique decoding may fail and lead to a large reconstruction error. In this brief, assuming that all the residues are allowed to have errors with small degrees, we consider how to reconstruct the polynomial as accurately as possible in the sense that a reconstructed polynomial is obtained with only the last τ number of coefficients being possibly erroneous, when the residues are affected by errors with degrees upper bounded by τ. In this regard, we first propose a multi-level robust Chinese remainder theorem for polynomials, namely, a tradeoff between the dynamic range of the degree of the polynomial to be reconstructed and the residue error bound τ is formulated. Furthermore, a simple closed-form reconstruction algorithm is also proposed.
机译:基于具有非成对的互质数模的多项式残差代码的唯一解码,当残差错误的数量小于最小距离的一半时,可以准确地重建度数小于所有模的最小公倍数的多项式。编码。但是,一旦残差错误的数量超过代码最小距离的一半,唯一解码可能会失败并导致较大的重构错误。在本摘要中,假设所有残差都允许有小程度的误差,那么我们将考虑如何尽可能准确地重构多项式,因为只有在最后τ个系数可能是错误的情况下才能获得重构的多项式,当残差受到误差的影响,误差上限为τ。在这方面,我们首先提出多项式的多级鲁棒汉语余数定理,即在要重构的多项式的阶数的动态范围与残差误差范围τ之间建立折衷方案。此外,还提出了一种简单的闭合形式重构算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号