首页> 外文期刊>Chemical Communications >Nanoporous, hypercrosslinked polypyrroles: effect of crosslinking moiety on pore size and selective gas adsorption
【24h】

Nanoporous, hypercrosslinked polypyrroles: effect of crosslinking moiety on pore size and selective gas adsorption

机译:纳米多孔,超交联的聚吡咯:交联部分对孔径和选择性气体吸附的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Nanoporous, hypercrosslinked polypyrroles with surface areas of up to 720 m~2 g~(-1) have been prepared; their pore sizes and gas adsorption selectivities were controlled by varying the size of the crosslinking units.rnNanoporous organic polymers have recently been studied for a variety of applications, including gas sorption and hydrogen storage. Of the methods available for the preparation of porous polymers, hypercrosslinking has proven to be among the most versatile. In hypercrosslinking, a precursor material is dissolved or swollen in a thermodynamically good solvent and a crosslinking reaction is used to lock the polymer in a state that resembles closely its solvated state. When the solvent is removed, the space that it leaves behind becomes pores. In this report we have explored the use of this strategy to prepare nanoporous polypyrroles with large surface areas, and explored a possible link between the sizes of the cross-linking units and that of the resulting pores. Hypercrosslinked polymers have been touted for their potential in separations, the adsorption of organic compounds, the storage of gases such as hydrogen and methane in their supercritical state, as electrodes and as media for chromatography. Porous polypyrroles have found applications in electronics as electrodes for batteries or as capacitors. Porosity is typically imparted to polypyrroles via a templating process utilizing nanoporous silicon or carbons. In addition to the importance of surface area in applications involving reactions which are kinetically limited, it has been suggested that the conductivity of doped polypyrrolc is a function of its surfacernarea.
机译:制备了纳米多孔,高度交联的聚吡咯,其表面积高达720 m〜2 g〜(-1)。它们的孔径和气体吸附选择性通过改变交联单元的大小来控制。纳米多孔有机聚合物最近已被研究用于多种应用,包括气体吸附和氢存储。在制备多孔聚合物的可用方法中,超交联已被证明是最通用的方法之一。在超交联中,前体材料在热力学良好的溶剂中溶解或溶胀,并且使用交联反应将聚合物锁定在与其溶剂化状态非常相似的状态。当除去溶剂时,溶剂留下的空间成为孔。在本报告中,我们探讨了使用该策略制备具有大表面积的纳米多孔聚吡咯,并探讨了交联单元尺寸与所得孔之间的可能联系。高交联聚合物因其在分离,有机化合物的吸附,超临界状态下的气体(如氢气和甲烷)的存储,电极和色谱分离方面的潜力而受到吹捧。多孔聚吡咯已经在电子产品中用作电池的电极或电容器的应用。通常通过利用纳米多孔硅或碳的模板工艺将孔隙赋予聚吡咯。除了在涉及动力学受限的反应的应用中表面积的重要性之外,还提出了掺杂的聚吡咯的电导率是其表面尿素的函数。

著录项

  • 来源
    《Chemical Communications》 |2009年第12期|1526-1528|共3页
  • 作者单位

    College of Chemistry, University of California, Berkeley, CA 94720-1460, USA;

    College of Chemistry, University of California, Berkeley, CA 94720-1460, USA The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8139, USA;

    The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8139, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:25:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号