...
首页> 外文期刊>Celestial Mechanics and Dynamical Astronomy >Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets
【24h】

Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets

机译:近距离行星系统的轨道稳定性,II:轨道行星的构型

获取原文
获取原文并翻译 | 示例
           

摘要

We numerically investigate the stability of systems of 1 planets orbiting a solar-mass star. The systems studied have either 2 or 42 planets per occupied semimajor axis, for a total of 6, 10, 126, or 210 planets, and the planets were started on coplanar, circular orbits with the semimajor axes of the innermost planets at 1 AU. For systems with two planets per occupied orbit, the longitudinal initial locations of planets on a given orbit were separated by either 60° (Trojan planets) or 180°. With 42 planets per semimajor axis, initial longitudes were uniformly spaced. The ratio of the semimajor axes of consecutive coorbital groups in each system was approximately uniform. The instability time for a system was taken to be the first time at which the orbits of two planets with different initial orbital distances crossed. Simulations spanned virtual times of up to 1 × 108, 5 × 105, and 2 × 105 years for the 6- and 10-planet, 126-planet, and 210-planet systems, respectively. Our results show that, for a given class of system (e.g., five pairs of Trojan planets orbiting in the same direction), the relationship between orbit crossing times and planetary spacing is well fit by the functional form log(t c /t 0) = b β + c, where t c is the crossing time, t 0 = 1 year, β is the separation in initial orbital semimajor axis (in terms of the mutual Hill radii of the planets), and b and c are fitting constants. The same functional form was observed in the previous studies of single planets on nested orbits (Smith and Lissauer 2009). Pairs of Trojan planets are more stable than pairs initially separated by 180°. Systems with retrograde planets (i.e., some planets orbiting in the opposite sense from others) can be packed substantially more closely than can systems with all planets orbiting in the same sense. To have the same characteristic lifetime, systems with 2 or 42 planets per orbit typically need to have about 1.5 or 2 times the orbital separation as orbits occupied by single planets, respectively.
机译:我们用数值方法研究了1个绕太阳质量恒星运行的行星的系统的稳定性。所研究的系统每个占据的半长轴有2或42个行星,总共6、10、126或210个行星,并且这些行星是从共面的圆形轨道开始的,最内层的行星的半长轴为1 AU。对于每个占领轨道上有两个行星的系统,给定轨道上的行星纵向初始位置相隔60°(特洛伊木马行星)或180°。每个半长轴有42颗行星,初始经度均匀分布。每个系统中连续的轨道组的半长轴之比大致均匀。系统的不稳定性时间被认为是具有不同初始轨道距离的两个行星的轨道首次相交的时间。对于6和10,虚拟时间跨度高达1×10 8 ,5×10 5 和2×10 5 年行星系统,126行星系统和210行星系统。我们的结果表明,对于给定类别的系统(例如,五对特洛伊木马沿同一方向运行),轨道穿越时间与行星间隔之间的关系通过函数形式log(t c < / sub> / t 0 )= bβ+ c,其中t c 是穿越时间,t 0 = 1年,β为初始轨道半长轴的间隔(以行星的互希尔半径表示),b和c是拟合常数。在先前关于嵌套轨道上的单个行星的研究中观察到了相同的功能形式(Smith and Lissauer 2009)。成对的特洛伊木马行星比最初分开180°的成对行星齿轮更稳定。带有逆行行星的系统(即某些行星以与其他行星相反的方向旋转)可以比所有行星均以相同方向旋转的系统更紧密地排列。为了具有相同的特征寿命,每个轨道上有2或42个行星的系统通常需要分别具有单个行星所占轨道的1.5或2倍的轨道间隔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号