首页> 外文期刊>Cartography and geographic information science >A space-time parallel framework for fine-scale visualization of pollen levels across the Eastern United States
【24h】

A space-time parallel framework for fine-scale visualization of pollen levels across the Eastern United States

机译:一个时空并行框架,用于在美国东部地区精细地可视化花粉水平

获取原文
获取原文并翻译 | 示例

摘要

Allergic rhinitis (hay fever) resulting from seasonal pollen affects 15-30% of the population in the United States, and can exacerbate several related conditions, including asthma, atopic eczema, and allergic conjunctivitis. Timely monitoring, accurate prediction, and visualization of pollen levels are critical for public health prevention purposes, such as limiting outdoor exposure or physical activity. The low density of pollen detecting stations and complex movement of pollen represent a challenge for accurate prediction and modeling. In this paper, we reconstruct the dynamics of pollen variation across the Eastern United States for 2016 using space-time interpolation. Pollen levels were extracted according to a stratified spatial sampling design, augmented by additional samples in densely populated areas. These measurements were then used to estimate the space-time cross-correlation, inferring optimal spatial and temporal ranges to calibrate the space-time interpolation. Given the computational requirements of the interpolation algorithm, we implement a spatiotemporal domain decomposition algorithm, and use parallel computing to reduce the computational burden. We visualize our results in a 3D environment to identify the seasonal dynamics of pollen levels. Our approach is also portable to analyze other large space-time explicit datasets, such as air pollution, ash clouds, and precipitation.
机译:由季节性花粉引起的过敏性鼻炎(花粉症)影响美国15%至30%的人口,并可能加剧几种相关疾病,包括哮喘,特应性湿疹和过敏性结膜炎。花粉水平的及时监控,准确预测和可视化对于预防公共卫生(例如限制室外暴露或体育锻炼)至关重要。花粉检测站的低密度和花粉的复杂运动代表了精确预测和建模的挑战。在本文中,我们使用时空插值重构了2016年美国东部花粉变化的动态。花粉水平是根据分层的空间采样设计提取的,在人口稠密的地区中添加了额外的样本。然后将这些测量值用于估计时空互相关,推断最佳时空范围以校准时空内插。鉴于插值算法的计算要求,我们实现了时空域分解算法,并使用并行计算来减轻计算负担。我们在3D环境中可视化我们的结果,以确定花粉水平的季节性动态。我们的方法还可用于分析其他大型时空显式数据集,例如空气污染,灰云和降水。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号