首页> 外文期刊>Calculus of Variations and Partial Differential Equations >A microscopic convexity theorem of level sets for solutions to elliptic equations
【24h】

A microscopic convexity theorem of level sets for solutions to elliptic equations

机译:椭圆方程组能级集的微观凸定理

获取原文
获取原文并翻译 | 示例

摘要

We study the microscopic level-set convexity theorem for elliptic equation Lu = f(x, u, Du), which generalize Korevaars’ result in (Korevaar, Commun Part Diff Eq 15(4):541–556, 1990) by using different expression for the elementary symmetric functions of the principal curvatures of the level surface. We find out that the structure conditions on equation are as same as conditions in macroscopic level-set convexity results (see e.g. (Colesanti and Salani, Math Nachr 258:3–15, 2003; Greco, Bound Value Prob 1–15, 2006)). In a forthcoming paper, we use the same techniques to deal with Hessian type equations.
机译:我们研究了椭圆方程Lu = f(x,u,Du)的微观水平集凸定理,该方程将Korevaars的结果推广为(Korevaar,Commun Part Diff Eq 15(4):541–556,1990),平面主曲率的基本对称函数的表达式。我们发现方程的结构条件与宏观水平集凸性结果中的条件相同(例如,参见(Colesanti和Salani,Math Nachr 258:3-15,2003; Greco,边界值概率1-15,2006)。 )。在即将发表的论文中,我们使用相同的技术来处理Hessian型方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号