首页> 外文期刊>Bulletin of engineering geology and the environment >Rockburst prediction for hard rock and deep-lying long tunnels based on the entropy weight ideal point method and geostress field inversion: a case study of the Sangzhuling Tunnel
【24h】

Rockburst prediction for hard rock and deep-lying long tunnels based on the entropy weight ideal point method and geostress field inversion: a case study of the Sangzhuling Tunnel

机译:基于熵权理理想点方法的硬岩和深层长隧道岩爆预测与石英场反演 - 以桑脉隧道为例

获取原文
获取原文并翻译 | 示例

摘要

To evaluate rockbursts in deep-lying long tunnels, a multiple factor analysis and predictions were conducted. It is necessary to establish whether the primary evaluation indexes cover the entire development-occurrence-evolution process for rockbursts and how best to determine the weights of the final selected indexes. We developed an evaluation model with attribute reduction and chose 5 out of 11 primary evaluation indexes to cover the typical characteristics of energy storage, rockburst proneness, and risk of failure. The weights of the primary evaluation indexes and the offset distance were then determined using the entropy weight ideal point method. Combining geostress field inversion and rock mechanic tests, the evaluation model was applied to the case of the Sangzhuling Tunnel along the Sichuan-Tibet railway. Rockburst prediction results achieved 41.2% and 94.1% accuracy when using the Manhattan and Euclidean distance functions, respectively. A more specific classification of the evaluation indexes may optimize the weight assignment and help obtain more accurate results. This paper provides a reliable method for rockburst predictions for hard rock and deep-lying long tunnels, which may have good prospects for engineering applications.
机译:为了评估深层长隧道中的摇滚乐,进行了多因素分析和预测。有必要建立主要评估指标是否涵盖岩虫萎缩的整个发育发生 - 进化过程,以及如何最好地确定最终选定索引的权重。我们开发了一个具有属性减少的评估模型,并选择了11个主要评估指标中的5个,以涵盖能量存储,岩体倾向和失败风险的典型特征。然后使用熵权重点方法确定主要评估指标和偏移距离的重量。结合石肿场反转和岩石机械测试,评价模型应用于四川省铁路桑脉隧道的情况。在使用曼哈顿和欧几里德距离函数时,岩爆预测结果达到了41.2%和94.1%的精度。评估索引的更具体分类可以优化权重分配,并帮助获得更准确的结果。本文为硬岩和深层长长的隧道提供了一种可靠的方法,可具有良好的工程应用前景。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号