首页> 外文期刊>Building and Environment >A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor
【24h】

A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor

机译:使用腕带温度传感器,热摄像机和环境温度传感器预测单个热敏和满足的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Recent advancements in Internet of Things and Machine Learning have opened the possibility of deploying sensors at a large scale to monitor the environment and to model and predict thermal comfort at an individual level. There has been a growing interest to use physiological information obtained from wearable devices or thermal imaging to improve individual thermal comfort prediction. In this study, we compared the accuracies of using environmental sensing with an air temperature sensor, physiological sensing with a wrist-worn device to monitor wrist skin temperature or thermal camera to monitor facial skin temperatures for predicting individual thermal sensation and satisfaction. The experiment was conducted in a controlled environment without any radiant heat sources or local comfort devices; solely the air temperature was changed. For the conditions studied, our results indicate that using data from an environmental sensor for predicting thermal comfort results in a higher accuracy compared to using physiological sensors (either wearable device or thermal camera) alone. Combining data from both environmental and physiological sensors leads to about 3%-4% higher accuracy than using environmental sensors only. Slight improvement in accuracy from the physiological sensors might not be sufficient to justify the privacy concerns and additional costs of using physiological sensors at a large scale for predicting thermal comfort in environments without radiant heat sources or local comfort devices. Future studies under different environmental conditions with a larger population are needed to better understand the tradeoffs between different sensing methods for predicting thermal comfort at an individual level.
机译:互联网和机器学习的最新进步已经开辟了大规模部署传感器的可能性,以监测环境和模型并预测个人水平的热舒适度。使用从可穿戴设备或热成像获得的生理信息,以提高单独的热舒适预测,已经存在日益增长的兴趣。在这项研究中,我们将使用空气温度传感器使用环境感测的精度,用手腕磨损的装置进行生理感测,以监测手腕皮肤温度或热摄像机,以监测面部皮肤温度以预测单个热敏感觉和满足。实验在受控环境中进行,没有任何辐射热源或局部舒适装置;仅改变了空气温度。对于所研究的条件,我们的结果表明,与使用物理传感器(可穿戴设备或热相机)相比,使用来自环境传感器的数据以预测热舒适度导致更高的精度。组合来自环境和生理传感器的数据,比使用环境传感器的准确性提高了约3%-4%。从生理传感器的准确性略有改善可能不足以使隐私问题和使用生理传感器以大规模的额外成本来证明在没有辐射热源或局部舒适装置的环境中预测热舒适度。需要在不同的环境条件下进行未来的研究,以更好地了解不同传感方法之间的权衡,以预测个人水平的热舒适度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号