首页> 外文期刊>IEEE Transactions on Broadcasting >Novel Approach to Design Time-Domain Training Sequence for Accurate Sparse Channel Estimation
【24h】

Novel Approach to Design Time-Domain Training Sequence for Accurate Sparse Channel Estimation

机译:设计时域训练序列以进行精确稀疏信道估计的新方法

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, orthogonal frequency division multiplexing system plays a more and more important role in telecommunication systems where the training sequence (TS) is usually adopted for synchronization and channel estimation, such as in the digital television/terrestrial multimedia broadcasting system. However, to achieve a channel estimation scheme with both high accuracy and spectrum efficiency is still challenging due to noise interference and delay spread of the propagation channel. In this paper, by applying the compressive sensing (CS) theory into the sparse channel estimation process for time-domain TS, a thorough investigation on the TS design criteria is carried out. Three criteria to optimize the TS design, which are to minimize the hyper-factors for coherence, the cumulative coherence, and the coherence variance, respectively, are proposed to improve the recovery performance. To minimize the corresponding merit factors of the proposed criteria, we first investigate a CS-based inverse discrete Fourier transform pattern of TS with cyclic structure, and then a genetic algorithm is proposed to further lower the merit factors. The simulation results show that by using the proposed optimized TSs, the channel estimation performance outperforms those obtained by either conventional pseudo-random noise sequence or brute force searching sequence in correct recovery probability, mean square error, and bit error rate. Moreover, the proposed criteria II and III have better performance than criterion I, while criterion III has the lowest computational complexity and is the most suitable for application.
机译:如今,正交频分复用系统在通常采用训练序列(TS)进行同步和信道估计的电信系统中,例如在数字电视/地面多媒体广播系统中,起着越来越重要的作用。然而,由于噪声干扰和传播信道的延迟扩展,实现具有高精度和频谱效率的信道估计方案仍然是挑战。本文将压缩感知理论应用到时域TS的稀疏信道估计过程中,对TS设计标准进行了深入研究。提出了三个优化TS设计的标准,分别是最小化相干性,累积相干性和相干方差的超因素,以提高恢复性能。为了最小化拟议标准的相应优值因子,我们首先研究了基于CS的循环结构TS离散傅里叶逆变换模式,然后提出了一种遗传算法来进一步降低优值因子。仿真结果表明,通过使用建议的优化TS,信道估计性能在正确的恢复概率,均方差和误码率方面均优于传统伪随机噪声序列或蛮力搜索序列。此外,提出的标准II和III比标准I具有更好的性能,而标准III具有最低的计算复杂度,最适合应用。

著录项

  • 来源
    《IEEE Transactions on Broadcasting》 |2016年第3期|512-520|共9页
  • 作者单位

    Electronic Engineering Department, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China;

    Electronic Engineering Department, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China;

    Electronic Engineering Department, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China;

    Electronic Engineering Department, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Channel estimation; Coherence; OFDM; Sensors; Time-domain analysis; Genetic algorithms; Sparse matrices;

    机译:信道估计;相干性;OFDM;传感器;时域分析;遗传算法;稀疏矩阵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号