首页> 外文期刊>IEEE Transactions on Broadcasting >Fine-Grained Motion Estimation for Video Frame Interpolation
【24h】

Fine-Grained Motion Estimation for Video Frame Interpolation

机译:用于视频帧插值的细粒度运动估计

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in video frame interpolation have shown that convolutional neural networks combined with optical flow are capable of producing a high-quality intermediate frame between two consecutive input frames in most scenes. However, existing methods have difficulties dealing with large and non-uniform motions that widely exist in real-world scenes because they often adopt the same strategy to deal with different motions, which easily results in unsatisfactory results. In this article, we propose a novel fine-grained motion estimation approach (FGME) for video frame interpolation. It mainly contains two strategies: multi-scale coarse-to-fine optimization and multiple motion features estimation. The first strategy is to gradually refine optical flows and weight maps, both of which are used to synthesize the target frame. The second strategy aims to provide fine-grained motion features by generating multiple optical flows and weight maps. To demonstrate its effectiveness, we propose a fully convolutional neural network with three refinement scales and four motion features. Surprisingly, this simple network produces state-of-the-art results on three standard benchmark datasets and real-world examples, with advantages in terms of effectiveness, simplicity, and network size over other existing approaches. Furthermore, we demonstrate that the FGME approach has good generality and can significantly improve the synthesis quality of other methods.
机译:视频帧插值的最近进步表明,与光学流相结合的卷积神经网络能够在大多数场景中在两个连续的输入帧之间产生高质量的中间帧。然而,现有方法难以处理大型和非统一的运动,这些动作在现实世界的场景中广泛存在,因为它们经常采用相同的策略来处理不同的动作,这很容易导致不令人满意的结果。在本文中,我们提出了一种用于视频帧插值的新型细粒度运动估计方法(FGME)。它主要包含两种策略:多尺度粗 - 精细优化和多个运动功能估计。第一策略是逐步改进光学流量和体重图,两者都用于合成目标帧。第二策略旨在通过产生多个光学流量和体重图提供细粒度的运动特征。为了展示其有效性,我们提出了一个完全卷积的神经网络,具有三个细化尺度和四个运动功能。令人惊讶的是,这个简单的网络在三个标准的基准数据集和现实世界示例上产生最先进的结果,在有效性,简单性和其他现有方法中具有优势。此外,我们证明FGME方法具有良好的普遍性,可以显着提高其他方法的合成质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号