首页> 外文期刊>IEEE Transactions on Broadcasting >Data-Driven Rate Control for Rate-Distortion Optimization in HEVC Based on Simplified Effective Initial QP Learning
【24h】

Data-Driven Rate Control for Rate-Distortion Optimization in HEVC Based on Simplified Effective Initial QP Learning

机译:基于简化有效初始QP学习的HEVC率失真优化的数据驱动率控制

获取原文
获取原文并翻译 | 示例

摘要

Different from the conventional calculative methods, a learning-based initial quantization parameter (LIQP) method is proposed in this paper to improve rate control of high efficiency video coding (H.265). First, the framework for initial quantization parameter (QP) learning is proposed, where a novel equivalent approach to build the benchmark labels is proposed using the single rate-distortion (R-D) pair in each initial QP testing. With the criterion of maximizing the prediction accuracy of initial QPs, features and parameters of the learning model are refined. Instead of the traditionally used target bits per pixel (bpp) for intraframe, the target bpp for all remaining frames is proposed to avoid the empirical setting on intracoding bits, and thus the related inaccuracy can be prevented. We clearly present the motivations of the proposed LIQP method, as well as the reasons for the extracted features and model parameters. The proposed LIQP method outperforms the latest HM-16.14 by achieving significant gains on R-D performance (-15.48% BD-BR and 0.782 dB BD-PSNR gains), quality smoothness (1.581 dB versus 2.598 dB), and more stable buffer occupancy control, with similar high bit rate accuracy (99.84% versus 99.87%), and can also work well for scene change cases.
机译:与传统的计算方法不同,本文提出了一种基于学习的初始量化参数(LIQP)方法,以改善高效视频编码(H.265)的速率控制。首先,提出了用于初始量化参数(QP)学习的框架,其中在每次初始QP测试中使用单速率失真(R-D)对提出了一种新颖的等效方法来建立基准标签。以最大化初始QP的预测准确性的标准为基础,对学习模型的特征和参数进行了改进。代替传统上用于帧内的每个像素的目标比特(bpp),提出了针对所有其余帧的目标bpp,以避免对帧内编码比特进行经验设置,从而可以防止相关的不准确性。我们清楚地介绍了提出的LIQP方法的动机,以及提取特征和模型参数的原因。拟议的LIQP方法优于HM-16.14,在RD性能(-15.48%BD-BR和0.782 dB BD-PSNR增益),质量平滑度(1.581 dB和2.598 dB)之间实现了显着提高,并且缓冲区占用率控制更加稳定,具有相似的高比特率精度(99.84%比99.87%),并且在场景更改的情况下也可以很好地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号