首页> 外文期刊>Bridge structures >Nonlinear dynamic analysis of fiber reinforced ultra-long span cable stayed bridges
【24h】

Nonlinear dynamic analysis of fiber reinforced ultra-long span cable stayed bridges

机译:纤维增强超大跨度斜拉桥非线性动力分析

获取原文
获取原文并翻译 | 示例

摘要

The central span which is the most critical part of a cable-stayed bridge has almost reached the technical limit for traditional materials, construction technology and bridge system capability. The idea of Ultra-long Span Cable Stayed Bridge (USCSB) is proposed in this paper by introducing a hybrid type cable stayed bridge as a competent system. The new system leads to huge reduction in deck weight and critical stresses in the pylon zones by using a hybrid advanced composite deck. A multi-scale modeling technique is adapted which represent material design at the micro/macro-level, and accurate homogenization of the advanced composite components properties and evaluation of the resulting anisotropic characteristics. Besides, the dynamic performance under wind and seismic excitations, and the potential deficiency of such a bridge system is investigated via state-of-the-art computer simulations and large-scale dual shaking table experiments. The investigation result demonstrated that adopting a fiber reinforced polymer deck system can efficiently reduce internal deck stresses due to the high strength of FRP materials and the tubular type of lay-up structural system, increase its load carrying capacity of cable stayed bridges and hence, having a great potential extent the span length of stay cable supported bridge system. At the same time, due to the relatively low Young's modulus and shear modulus of fibrous materials, deflection at full loading and torsional resistance should be carefully controlled by using a convex initial configuration with sufficient internal bracing. Moreover, investigation result also suggested that wind induced coupling excitation is likely to occur in such a light-weighted system with low shear and torsional stiffness.
机译:中心跨度是斜拉桥最关键的部分,几乎已经达到了传统材料,建筑技术和桥梁系统能力的技术极限。本文通过引入混合型斜拉桥作为主管系统,提出了超大跨度斜拉桥(USCSB)的思想。新系统通过使用混合先进复合材料甲板,大大减少了甲板重量和塔架区域的临界应力。采用了多尺度建模技术,可以代表微观/宏观级别的材料设计,并且可以对高级复合材料组件的特性进行精确的均质化,并评估由此产生的各向异性。此外,还通过最新的计算机模拟和大型双振动台实验研究了在风和地震激励下的动态性能以及这种桥梁系统的潜在缺陷。研究结果表明,采用纤维增强聚合物桥面系统可以有效地降低由于FRP材料的高强度和管状叠层结构系统而引起的桥面内部应力,从而增加斜拉桥的承载能力,因此具有斜拉桥支撑桥系统的跨度很大。同时,由于纤维材料的杨氏模量和剪切模量相对较低,应通过使用具有足够内部支撑的凸形初始构型来仔细控制全负荷下的挠度和抗扭强度。此外,研究结果还表明,在这种具有低剪切和扭转刚度的轻型系统中,可能会发生风致耦合激励。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号