首页> 外文期刊>Brain Topography >Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation
【24h】

Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation

机译:EEG / MEG在线性分布式源重构中的时空正则化:一项重要评估

获取原文
获取原文并翻译 | 示例

摘要

The high temporal resolution of EEG/MEG data offers a way to improve source reconstruction estimates which provide insight into the spatio-temporal involvement of neuronal sources in the human brain. In this work, we investigated the performance of spatio-temporal regularization (STR) in a current density approach using a systematic comparison to simple ad hoc or post hoc filtering of the data or of the reconstructed current density, respectively. For the used STR approach we implemented a frequency-specific constraint to penalize solutions outside a narrow frequency band of interest. The widely used sLORETA algorithm was adapted for STR and generally used for source reconstruction. STR and filtering approaches were evaluated with respect to spatial localization error and spatial dispersion, as well as to correlation of original and reconstructed source time courses in single source and two source scenarios with fixed source locations and oscillating source waveforms. We used extensive computer simulations and tested all algorithms with different parameter settings (noise levels and regularization parameters) for EEG data. To verify our results, we also used data from MEG phantom measurements. For the investigated scenarios, we did not find any evidence that STR-based methods outperform purely spatial algorithms applied to temporally filtered data. Furthermore, the results show very clearly that the performance of STR depends very much on the choice of regularization parameters.
机译:EEG / MEG数据的高时间分辨率提供了一种改进源重构估计的方法,该估计提供了对人脑中神经元源时空参与的洞察。在这项工作中,我们分别对数据或重构电流密度的简单自组织或事后过滤进行系统比较,研究了电流密度方法中时空正则化(STR)的性能。对于所使用的STR方法,我们实施了特定于频率的约束,以惩罚目标窄频带以外的解决方案。广泛使用的sLORETA算法适用于STR,通常用于源重构。对STR和滤波方法进行了空间定位误差和空间色散评估,以及单源和具有固定源位置和振荡源波形的两个源方案中原始和重构源时间过程的相关性。我们使用了广泛的计算机模拟,并针对EEG数据测试了具有不同参数设置(噪声水平和正则化参数)的所有算法。为了验证我们的结果,我们还使用了来自MEG体模测量的数据。对于所研究的场景,我们没有发现任何证据表明基于STR的方法优于应用于时间过滤数据的纯空间算法。此外,结果非常清楚地表明STR的性能在很大程度上取决于正则化参数的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号