首页> 外文期刊>Brain-Computer Interfaces >Personalized adaptive instruction design (PAID) for brain-computer interface using reinforcement learning and deep learning: simulated data study
【24h】

Personalized adaptive instruction design (PAID) for brain-computer interface using reinforcement learning and deep learning: simulated data study

机译:使用强化学习和深度学习的人机界面个性化自适应指令设计(PAID):模拟数据研究

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer interface (BCI) systems may require the user to perform a set of mental tasks, such as imagining different types of motion. The performance demonstrated on these tasks varies with time and between users. This study presents a new method for the automatically adaptive, user-specific generation of a sequence of tasks to increase the effectiveness of user training. For this purpose, we developed the Personalized Adaptive Instruction Design (PAID) algorithm, which uses reinforcement learning and deep learning. Using simulated data, we compared the training strategy developed here with uniform random and sequential selection strategies. The results demonstrate that the PAID strategy outperforms the others and is close to the theoretically optimal solution. Moreover, our algorithm offers the possibility of efficiently integrating psychological aspects of the training process into the generated strategy.
机译:脑机接口(BCI)系统可能要求用户执行一组心理任务,例如想象不同类型的运动。这些任务上展示的性能随时间以及用户之间的不同而不同。这项研究提出了一种新的方法,用于自动自适应地针对用户的任务序列生成,以提高用户培训的效率。为此,我们开发了使用自适应学习和深度学习的个性化自适应指令设计(PAID)算法。使用模拟数据,我们将此处开发的训练策略与统一的随机和顺序选择策略进行了比较。结果表明,PAID策略优于其他策略,并且接近理论上的最佳解决方案。此外,我们的算法提供了将培训过程的心理方面有效地整合到生成的策略中的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号