首页> 外文期刊>BIT numerical mathematics >Block boundary value methods for linear weakly singular Volterra integro-differential equations
【24h】

Block boundary value methods for linear weakly singular Volterra integro-differential equations

机译:线性弱奇异Volterra积分微分方程的块边界值方法

获取原文
获取原文并翻译 | 示例

摘要

A class of block boundary value methods (BBVMs) is constructed for linear weakly singular Volterra integro-differential equations (VIDEs). The convergence and stability of these methods is analysed. It is shown that optimal convergence rates can be obtained by using special graded meshes. Numerical examples are given to illustrate the sharpness of our theoretical results and the computational effectiveness of the methods. Moreover, a numerical comparison with piecewise polynomial collocation methods for VIDEs is given, which shows that the BBVMs are comparable in numerical precision.
机译:为线性弱奇异Volterra积分 - 微分方程(Vides)构建了一类块边界值方法(BBVM)。 分析了这些方法的收敛性和稳定性。 结果表明,可以通过使用特殊分级网格来获得最佳收敛速率。 给出了数值例子来说明我们理论结果的锐度和方法的计算效果。 此外,给出了具有用于Vides的分段多项式搭配方法的数值比较,这表明BBVM以数值精度相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号