首页> 外文期刊>BIT numerical mathematics >A note on optimal H~1-error estimates for Crank-Nicolson approximations to the nonlinear Schrodinger equation
【24h】

A note on optimal H~1-error estimates for Crank-Nicolson approximations to the nonlinear Schrodinger equation

机译:关于非线性Schrodinger方程的曲柄 - 尼科尔森近似的最佳H〜1误差估计的说明

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider a mass- and energy-conserving Crank-Nicolson time discretization for a general class of nonlinear Schrodinger equations. This scheme, which enjoys popularity in the physics community due to its conservation properties, was already subject to several analytical and numerical studies. However, a proof of optimal L-infinity(H-1)-error estimates is still open, both in the semi-discrete Hilbert space setting, as well as in fully-discrete finite element settings. This paper aims at closing this gap in the literature. We also suggest a fixed point iteration to solve the arising nonlinear system of equations that makes the method easy to implement and efficient. This is illustrated by numerical experiments.
机译:在本文中,我们考虑了一般类非线性Schrodinger方程的大规模和节能曲柄 - 尼古尔森时间离散化。这种在物理界受欢迎的方案由于其保护特性而受到普及,已经受到几种分析和数值研究。然而,最佳L-Infinity(H-1)-Error估计的证据仍然是开放的,也可以在半离散希尔伯特空间设置中,以及完全离散的有限元设置。本文旨在关闭文献中的这种差距。我们还建议解决一个固定点迭代,以解决使该方法易于实施和高效的方程式的出现的非线性系统。这是通过数值实验说明的。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号