首页> 外文期刊>BIT numerical mathematics >GLOBAL ERROR ESTIMATION AND EXTRAPOLATED MULTISTEP METHODS FOR INDEX 1 DIFFERENTIAL-ALGEBRAIC SYSTEMS
【24h】

GLOBAL ERROR ESTIMATION AND EXTRAPOLATED MULTISTEP METHODS FOR INDEX 1 DIFFERENTIAL-ALGEBRAIC SYSTEMS

机译:指数1微分代数系统的整体误差估计和外推多步法

获取原文
获取原文并翻译 | 示例

摘要

In recent papers the technique for a local and global error estimation and the local-global step size control were presented to solve both ordinary differential equations and semi-explicit index 1 differential-algebraic systems by multistep methods with any reasonable accuracy attained automatically. Now those results are extended to the concept of multistep extrapolation, and the paper demonstrates with numerical examples how such methods work in practice. Especially, we develop an efficient technique to calculate higher derivatives of a numerical solution with Hermite interpolating polynomials. The necessary theory is also provided.
机译:在最近的论文中,提出了一种用于局部和全局误差估计的技术以及局部-全局步长控制,以通过多步法求解常微分方程和半显式指数1微分代数系统,并且自动地获得了任何合理的精度。现在,这些结果扩展到了多步外推的概念,并且本文通过数值示例演示了这种方法在实践中的工作方式。尤其是,我们开发了一种高效的技术,用于使用Hermite插值多项式计算数值解的高阶导数。还提供了必要的理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号