首页> 外文期刊>BIT numerical mathematics >A compact finite difference method for solving a class of time fractional convection-subdiffusion equations
【24h】

A compact finite difference method for solving a class of time fractional convection-subdiffusion equations

机译:一类时间分数阶对流-扩散方程的紧凑有限差分法

获取原文
获取原文并翻译 | 示例

摘要

A high-order compact finite difference method is proposed for solving a class of time fractional convection-subdiffusion equations. The convection coefficient in the equation may be spatially variable, and the time fractional derivative is in the Caputo's sense with the order (). After a transformation of the original equation, the spatial derivative is discretized by a fourth-order compact finite difference method and the time fractional derivative is approximated by a -order implicit scheme. The local truncation error and the solvability of the method are discussed in detail. A rigorous theoretical analysis of the stability and convergence is carried out using the discrete energy method, and the optimal error estimates in the discrete , and norms are obtained. Applications using several model problems give numerical results that demonstrate the effectiveness and the accuracy of this new method.
机译:提出了一种高阶紧致有限差分方法来求解一类时间分数对流-扩散方程。等式中的对流系数可以在空间上变化,并且时间分数导数在Caputo的意义上为()。在对原始方程式进行变换之后,通过四阶紧致有限差分法将空间导数离散化,并通过一阶隐式方案对时间分数导数进行近似。详细讨论了该方法的局部截断误差和可解性。使用离散能量方法对稳定性和收敛性进行了严格的理论分析,并获得了离散的最优误差估计和范数。使用几个模型问题的应用给出的数值结果证明了这种新方法的有效性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号