首页> 外文期刊>Biomedical signal processing and control >Obstructive sleep apnea event prediction using recurrence plots and convolutional neural networks (RP-CNNs) from polysomnographic signals
【24h】

Obstructive sleep apnea event prediction using recurrence plots and convolutional neural networks (RP-CNNs) from polysomnographic signals

机译:阻塞性睡眠呼吸暂停事件预测来自多陀螺信号的复发块和卷积神经网络(RP-CNNS)

获取原文
获取原文并翻译 | 示例

摘要

The prediction of Obstructive Sleep Apnea (OSA) through common polysomnographic signals before stop breathing triggers the ventilation-aided machines such as Continuous Positive Airway Pressure (CPAP). In this paper, a novel schema is proposed based on the representation of the dynamical behavior of polysomnographic signals. This procedure is accomplished using a combination of the Recurrence Plots (RPs) and Convolutional Neural Networks (CNNs), called RP-CNNs. In this regard, the OSA events of 30, 60, 90, and 120 s are predicted before the occurrence. The first phase was to create RP images via Electroencephalogram (EEG), Electrocardiogram (ECG), and respiration signals at a single level. Then, the RP images were independently fed into two fast and robust pre-trained CNNs, naming ResNet-18 and ShuffleNet. Thus, the networks were fine-tuned, and the mentioned events were classified. In the second phase, the classification results were fused using the Weighted Majority Voting (WMV) method to make the final decision. Finally, subject-dependent and subject-independent evaluation criteria were utilized for the MIT-BIH polysomnographic and Dublin sleep apnea databases. The RPShuffleNet and 10-fold cross-validation were employed to attain the highest average accuracy and Area Under the Curve (AUC) through 30-second intervals before the OSA events at fusion-level in MIT-BIH polysomnographic and Dublin sleep apnea databases. The achieved results were 90.72%, 0.8937, 90.45%, and 0.9010, respectively. Predicting the OSA events using representation of the dynamical behavior of polysomnographic signals and the fusion of results of the fine-tuned CNNs have been led to the enhancement of the results compared to the state-of-the-art studies.
机译:在停止呼吸之前通过常见多色摄影信号预测阻塞性睡眠呼吸暂停(OSA)触发了通风辅助机器,例如连续正气道压力(CPAP)。在本文中,提出了一种基于多仪表信号的动态行为的表示的新颖的模式。使用复制图(RPS)和卷积神经网络(CNNS)的组合来完成该过程,称为RP-CNN。在这方面,在发生之前预测了30,60,90和120秒的OSA事件。第一阶段是通过脑电图(EEG),心电图(ECG)和单个级别的呼吸信号来创建RP图像。然后,RP图像独立地送入两个快速且坚固的预训练的CNN,命名Reset-18和Shuffleenet。因此,网络进行了微调,并且提到的事件被分类。在第二阶段,分类结果使用加权大多数投票(WMV)方法融合,以进行最终决定。最后,对受试者依赖性和对象的评估标准用于MIT-BIH多差距和都柏林睡眠呼吸暂停数据库。在MIT-BIH多仪表和都柏林睡眠APNEA数据库中的融合级别之前,使用RPShufflenet和10倍交叉验证在融合级别的OSA事件之前获得曲线(AUC)下的最高平均精度和区域。达到的结果分别为90.72%,0.8937,90.45%和0.9010。使用光度计信号的动态行为的表示预测OSA事件以及微调CNN的结果的融合已经导致结果的增强与最先进的研究相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号