首页> 外文期刊>Biomedical signal processing and control >Edge and neighborhood guidance network for 2D medical image segmentation
【24h】

Edge and neighborhood guidance network for 2D medical image segmentation

机译:2D医学图像分割的边缘和邻域指导网络

获取原文
获取原文并翻译 | 示例

摘要

Accurate automatic image segmentation is important in medical image analysis. A perfect segmentation using fully convolutional network (FCN) means an accurate classification of each pixel. However, it is still a great challenge to accurately differentiate edge pixels from neighborhood pixels in weak edge regions. Many previous segmentation methods have focused on edge information to mitigate weak edge problems, but the more important neighborhood information is undervalued. To tackle this problem, in this paper, we propose a novel yet effective Edge and Neighborhood Guidance Network (ENGNet). Specifically, instead of just utilizing the edge information as the shape constraints, the edge and neighborhood guidance (ENG) module is designed to exploit the edge information and fine-grained neighborhood spatial information simultaneously, so as to improve the ability of network to classify edge pixels and neighborhood pixels in weak edge regions. Moreover, the ENG modules are adopted in different scales to learn sufficient feature representations of edge and neighborhood. To extract complementary features more effectively in channel dimension, we also design a multi-scale adaptive selection (MAS) module at channel-wise to extract multi-scale context information and adaptively fuse differentscale features. Two 2D public segmentation datasets including skin lesion dataset and endoscopic polyp dataset are used to evaluate the performance of the proposed ENGNet. Experimental results demonstrated that by exploiting edge information and neighborhood spatial information in different scales simultaneously, the proposed ENGNet can effectively alleviate the misclassification in weak edge regions and achieve better performance than other state-of-the-art methods.
机译:精确的自动图像分割对于医学图像分析很重要。使用完全卷积网络(FCN)的完美分割意味着每个像素的准确分类。然而,在弱边缘区域中的邻域像素中精确地区分边缘像素仍然是一个巨大的挑战。许多以前的分段方法专注于边缘信息以缓解弱边缘问题,但更重要的邻域信息被低估。为了解决这个问题,在本文中,我们提出了一种新颖且有效的边缘和邻域指导网络(Engnet)。具体地,而不是仅利用边缘信息作为形状约束,边缘和邻域引导(ENG)模块被设计为同时利用边缘信息和微粒邻域空间信息,以提高网络对分类边缘的能力弱边缘区域中的像素和邻域像素。此外,ENG模块以不同的尺度采用,以了解边缘和邻域的足够特征表示。为了更有效地在信道维中提取互补特征,我们还在通道中设计了一个多尺度自适应选择(MAS)模块,以提取多尺度上下文信息并自适应地保险丝差异尺寸特征。包括皮肤损伤数据集和内窥镜息点数据集的两个2D公共分段数据集用于评估所提出的收集的性能。实验结果表明,通过同时利用不同尺度的边缘信息和邻域空间信息,所提出的收集能够有效地减轻弱边缘区域的错误分类,并实现比其他最先进的方法更好的性能。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第8期|102856.1-102856.10|共10页
  • 作者单位

    Univ Sci & Technol China Sch Biomed Engn Suzhou Div Life Sci & Med Hefei 230026 Peoples R China|Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China;

    Univ Sci & Technol China Sch Biomed Engn Suzhou Div Life Sci & Med Hefei 230026 Peoples R China|Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China;

    Soochow Univ Sch Elect & Informat Engn Jiangsu 215006 Peoples R China;

    Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China;

    Univ Sci & Technol China Sch Biomed Engn Suzhou Div Life Sci & Med Hefei 230026 Peoples R China|Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China;

    Univ Sci & Technol China Sch Biomed Engn Suzhou Div Life Sci & Med Hefei 230026 Peoples R China|Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China;

    Univ Sci & Technol China Sch Biomed Engn Suzhou Div Life Sci & Med Hefei 230026 Peoples R China|Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China;

    Univ Sci & Technol China Sch Biomed Engn Suzhou Div Life Sci & Med Hefei 230026 Peoples R China|Chinese Acad Sci Suzhou Inst Biomed Engn & Technol Dept Med Imaging Suzhou 215163 Peoples R China|Jinan Guoke Med Technol Dev Co Ltd Jinan 250101 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Medical image segmentation; Weak edge; Edge and neighborhood guidance module; Multi-scale adaptive selection module;

    机译:医学图像分割;弱边缘;边缘和邻域指导模块;多尺度自适应选择模块;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号